TIME‐VARYING VOLATILITY MODELLING OF BALTIC STOCK MARKETS

Author:

Aktan Bora1,Korsakienė Renata2,Smaliukienė Rasa2

Affiliation:

1. Yasar University, Faculty of Economics and Business, Department of Finance, Selcuk Yasar Campus, 35100 Bornova, Izmir, Turkey

2. Vilnius Gediminas Technical University, Saulėtekio al 11, 10223 Vilnius, Lithuania

Abstract

As time‐varying volatility has found applications in roughly all time series modelling in economics, it largely draws attention in the areas of financial markets. This study also examines the characteristics of conditional volatility in the Baltic Stock Markets (Estonia, Latvia and Lithuania) by using a broad range of GARCH volatility models. Correctly forecasting the volatility leads to better understanding and managing financial market risk. Daily returns from four Baltic stock indexes are used; Estonia (TALSE index), Latvia (RIGSE index), Lithuania (VILSE index) and synthetic BALTIC benchmark index. We test a large family of GARCH models, including; the basic GARCH model, GARCH‐in‐mean model, asymmetric exponential GARCH and GJR GARCH, power GARCH and component GARCH model. We find strong evidence that daily returns from Baltic Stock Markets can be successfully modelled by GARCH‐type models. For all Baltic markets, we conclude that increased risk will not necessarily lead to a rise in the returns. All of the analysed indexes exhibit complex time series characteristics involving asymmetry, long tails and complex autoregression in the returns. Results from this study are firmly recommended to financial officers and international investors. Santrauka Straipsnyje analizuojamas salyginis Baltijos vertybiniu popieriu rinku (Estijos, Latvijos ir Lietuvos) nepastovumas, taikant eile GARCH kintamumo modeliu. Pažymetina, kad tinkamai prognozuojant nepastovuma, galima geriau suvokti ir valdyti finansiniu rinku rizika. Straipsnyje remiamasi keturiu Baltijos šaliu kasdienemis akciju indeksu gražomis; Estijos (TALSE indeksu), Latvijos (RIGSE indeksu), Lietuvos (VILSE indeksu) ir sintetiniu palyginamuoju BALTIC indeksu. Pritaikius eile GARCH kintamumo modeliu, galima teigti, kad didejanti rizika Baltijos šaliu rinkose nebūtinai itakos vertybiniu popieriu gražos augima. Tyrimo metu gauti rezultatai rekomenduojami finansu specialistams ir investuotojams.

Publisher

Vilnius Gediminas Technical University

Subject

Economics and Econometrics,Business, Management and Accounting (miscellaneous)

Reference40 articles.

1. APPROACH TO INNOVATIVE ACTIVITIES BY LITHUANIAN COMPANIES IN THE CURRENT CONDITIONS OF DEVELOPMENT / LIETUVOS ĮMONIŲ POŽIŪRIS Į INOVACINĘ VEIKLĄ DABARTINIO VYSTYMOSI SĄLYGOMIS

2. Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts

3. Alexander, C. 2000.Risk Management and Analysis, Measuring and Modelling Financial Risk, 304New York: John Wiley & Sons. ISBN‐10: 0471979570

4. Alexander, C. 2001.Market Models: A Guide to Financial Data Analysis, 514New York: John Wiley & Sons. ISBN13: 9780471899754

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3