VOLATILITY REGIMES OF SELECTED CENTRAL EUROPEAN STOCK RETURNS: A MARKOV SWITCHING GARCH APPROACH

Author:

Chocholatá Michaela1ORCID

Affiliation:

1. Department of Operations Research and Econometrics, Faculty of Economic Informatics, University of Economics in Bratislava, Bratislava, Slovakia

Abstract

This paper investigates the weekly stock market data of the Hungarian stock index BUX, the Czech stock index PX and the Polish stock index WIG20 spanning from January 7, 2001 to April 18, 2021. The period of more than 20 years enabled to analyse the behaviour of returns and their volatility during both the calm as well as various crises/turmoil periods. Besides the traditional GARCH-type models (GARCH and GJR-GARCH) the two-regime Markov Switching GARCHtype models (MS-GARCH and MS-GJR-GARCH) were estimated in order to examine the volatility switches of the Central European transition stock markets. The t-distribution of error terms was used to capture the dynamics of analysed returns more precisely. The results proved high volatility persistence of individual markets which substantially differed across the both regimes. Furthermore, the GJR-GARCH and MS-GJR-GARCH models clearly confirmed the presence of the leverage effect. Consideration of the MS-GARCH-type models enabled to capture various volatility switches during the analysed period attributable mainly to the global financial crisis 2008–2009, to European debt crisis in 2011 and to the Covid-19 pandemic in 2020. Interesting results were received for the Czech market with the strong leverage effect indicating completely different specification of volatility regimes by the MS-GJR-GARCH model.

Publisher

Vilnius Gediminas Technical University

Subject

Economics and Econometrics,Business, Management and Accounting (miscellaneous)

Reference37 articles.

1. STOCK RETURNS, VOLATILITY AND MEAN REVERSION IN EMERGING AND DEVELOPED FINANCIAL MARKETS

2. TIME‐VARYING VOLATILITY MODELLING OF BALTIC STOCK MARKETS

3. Forecasting risk with Markov-switching GARCH models:A large-scale performance study

4. Markov-Switching GARCH Models in R: The MSGARCH Package

5. Ardia, D., Bluteau, K., Boudt, K., Catania, L., Ghalanos, A., Peterson, B., & Trottier, D.-A. (2020). MSGARCH: Markov-switching GARCH models in R. R package version 2.42. https://CRAN.R-project.org/package=MSGARCH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3