DEEP NEURAL NETWORK BASED DATA-DRIVEN VIRTUAL SENSOR IN VEHICLE SEMI-ACTIVE SUSPENSION REAL-TIME CONTROL

Author:

Kojis Paulius1,Šabanovič Eldar1,Skrickij Viktor1

Affiliation:

1. Transport and Logistics Competence Centre, Vilnius Gediminas Technical University, Lithuania

Abstract

This research presents a data-driven Neural Network (NN)-based Virtual Sensor (VS) that estimates vehicles’ Unsprung Mass (UM) vertical velocity in real-time. UM vertical velocity is an input parameter used to control a vehicle’s semi-active suspension. The extensive simulation-based dataset covering 95 scenarios was created and used to obtain training, validation and testing data for Deep Neural Network (DNN). The simulations have been performed with an experimentally validated full vehicle model using software for advanced vehicle dynamics simulation. VS was developed and tested, taking into account the Root Mean Square (RMS) of Sprung Mass (SM) acceleration as a comfort metric. The RMS was calculated for two cases: using actual UM velocity and estimations from the VS as input to the suspension controller. The comparison shows that RMS change is less than the difference threshold that vehicle occupants could perceive. The achieved result indicates the great potential of using the proposed VS in place of the physical sensor in vehicles.

Publisher

Vilnius Gediminas Technical University

Subject

Mechanical Engineering,Automotive Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3