PREDICTION FOR TRAFFIC ACCIDENT SEVERITY: COMPARING THE ARTIFICIAL NEURAL NETWORK, GENETIC ALGORITHM, COMBINED GENETIC ALGORITHM AND PATTERN SEARCH METHODS

Author:

Kunt Mehmet Metin1,Aghayan Iman1,Noii Nima2

Affiliation:

1. Dept of Civil Engineering, Eastern Mediterranean University, Gazimagusa KKTC, Mersin 10, Turkey

2. School of Civil Engineering and Surveying, University of Portsmouth, Portsmouth, Hampshire, PO1 3AH, United Kingdom

Abstract

This paper focuses on predicting the severity of freeway traffic accidents by employing twelve accident-related parameters in a genetic algorithm (GA), pattern search and artificial neural network (ANN) modelling methods. The models were developed using the input parameters of driver's age and gender, the use of a seat belt, the type and safety of a vehicle, weather conditions, road surface, speed ratio, crash time, crash type, collision type and traffic flow. The models were constructed based on 1000 of crashes in total that occurred during 2007 on the Tehran–Ghom Freeway due to the fact that the remaining records were not suitable for this study. The GA evaluated eleven equations to obtain the best one. Then, GA and PS methods were combined using the best GA equation. The neural network used multi-layer perceptron (MLP) architecture that consisted of a multi-layer feed-forward network with hidden sigmoid and linear output neurons that could also fit multi-dimensional mapping problems arbitrarily well. The ANN was applied during training, testing and validation and had 12 inputs, 25 neurons in the hidden layers and 3 neurons in the output layer. The best-fit model was selected according to the R-value, root mean square errors (RMSE), mean absolute errors (MAE) and the sum of square error (SSE). The highest R-value was obtained for the ANN around 0.87, demonstrating that the ANN provided the best prediction. The combination of GA and PS methods allowed for various prediction rankings ranging from linear relationships to complex equations. The advantage of these models is improving themselves adding new data.

Publisher

Vilnius Gediminas Technical University

Subject

Mechanical Engineering,Automotive Engineering

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3