Affiliation:
1. Shandong University of Science and Technology 266590 Qingdao, China
2. Swinburne University of Technology PO Box 218, Hawthorn, 3122 VIC, Australia
Abstract
This paper aims to develop a high-dimensional SI model with stage structure for both the prey (pest) and the predator, and then to investigate the dynamics of it. The model can be used for the study of Integrated Pest Management (IPM) which is a combination of constant pulse releasing of animal enemies and diseased pests at two different fixed moments. Firstly, we use analytical techniques for impulsive delay differential equations to obtain the conditions for global attractivity of the ‘pest-free’ periodic solution and permanence of the population model. It shows that the conditions strongly depend on time delay, impulsive release of animal enemies and infective pests. Secondly, we present a pest management strategy in which the pest population is kept under the economic threshold level (ETL) when the pest population is permanent. Finally, numerical analysis is presented to illustrate our main conclusion.
Publisher
Vilnius Gediminas Technical University
Subject
Modelling and Simulation,Analysis
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献