Affiliation:
1. Vilnius University
2. Universidad de Almeria
Abstract
A stochastic search optimization algorithm is developed and applied to solve a bi-objective competitive facility location problem for firm expansion. Parallel versions of the developed algorithm for shared- and distributed-memory parallel computing systems are proposed and experimentally investigated by approximating the Pareto front of the competitive facility location problem of different scope. It is shown that the developed algorithm has advantages against its precursor in the sense of the precision of approximation. It is also shown that the proposed parallel versions of the algorithm have almost linear speed-up when solving competitive facility location problems of different scope reasonable for practical applications.
Funder
Research Council of Lithuania
Publisher
Vilnius Gediminas Technical University
Subject
Modelling and Simulation,Analysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献