Mutigroup-Based Phasmatodea Population Evolution Algorithm with Mutistrategy for IoT Electric Bus Scheduling

Author:

Zhu Yunxiang1ORCID,Yan Fengting1ORCID,Pan Jeng-Shyang2ORCID,Yu Lei1,Bai Yuanfei1,Wang Weigang3,He Chunxia4,Shi Zhicai15

Affiliation:

1. Shanghai University of Engineering Science, Shanghai 201620, China

2. Shandong University of Science and Technology, Qingdao, Shandong 266590, China

3. Shanghai Municipal Engineering Design and Research Institute (Group) Co., Ltd., Shanghai 200092, China

4. Shanghai Urban Construction Vocational College, Shanghai 201999, China

5. Shanghai Key Laboratory of Integrated Administration Technologies for Information Security, Shanghai 200240, China

Abstract

The Phasmatodea population evolution algorithm (PPE) is a novel metaheuristic algorithm proposed in recent years, which simulates the evolutionary trend of stick insect population. In this article, a multigroup-based Phasmatodea population evolution algorithm with mutistrategy (MPPE) is proposed to further improve the overall performance of PPE. During the initialization period, the stick insect population is divided into multiple groups, and the step factor of the flower pollen algorithm is introduced into the population growth model of no more than half of the groups. This makes the population evolution trend diversified and prevents the algorithm from falling into the local optimal solution to a certain extent. In terms of intergroup communication, two communication strategies are adopted to mutate and replace the inferior particles, respectively, which improves the convergence speed and search ability of the algorithm. In the MPPE performance test, we compared it with PPE, five standard algorithms, and other parallel algorithms in CEC 2013 Benchmark Suite. Finally, this algorithm is applied to the IoT based electric bus scheduling for urban waterlogging situation, and the excellent performance of MPPE is verified comprehensively.

Funder

National Key Project of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3