Author:
Pratama Alfan Rizaldy Pratama,Bima Sena Bayu Dewantara ,Dewi Mutiara Sari ,Dadet Pramadihanto
Abstract
One of the most commonly faced tasks in industrial robots is bin picking. Much work has been done in this related topic is about grasping and picking an object from the piled bin but ignoring the recognition step in their pipeline. In this paper, a recognition pipeline for industrial bin picking is proposed. Begin with obtaining point cloud data from different manner of stacking objects there are well separated, well piled, and arbitrary piled. Then followed by segmentation using Density-based Spatial Clustering Application with Noise (DBSCAN) to obtain individual object data. The systems then use Convolutional Neural Network (CNN) that consume raw point cloud data. Performance of the segmentation reaches an impressive result in separating objects and network is evaluated under the varying style of stacking objects and give the result with average Accuracy, Recall, Precision, and F1-Score on 98.72%, 95.45%, 99.39%, and 97.33% respectively. Then the obtained model can be used for multiple objects recognition in one scene.
Publisher
EMITTER International Journal of Engineering Technology
Reference24 articles.
1. Le T-T and Lin C-Y, Bin-Picking for Planar Objects Based on a Deep Learning Network: A Case Study of USB Packs, Sensors, vol. 19, no. 16, 2019.
2. Yan W, Xu Z, Zhou X, Su Q, Li S, and Wu H, Fast Object Pose Estimation Using Adaptive Threshold for Bin-Picking, IEEE Access, vol. 8, pp. 63055-63064, 2020.
3. Sari DM, Pratama AR, Pramadihanto D, and Marta BS, 3D Object Detection Based on Point Cloud Data, Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi, vol. 7, no. 1, pp. 59-66, 2022.
4. Kameshwaran K and Malarvizhi K, Survey on Clustering Techniques in Data Mining, (IJCSIT) International Journal of Computer Science and Information Tehcnologies, vol. 5, no. 2, pp. 2272-2276, 2014.
5. Rusu RB, Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments, Ph.D thesis, Technische Universität München, 2010.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献