Affiliation:
1. Belarusian State University
Abstract
Objectives. A variational-difference method for numerical simulation of equilibrium capillary surfaces based on the minimization of the energy functional is proposed. As a test task a well-known axisymmetric hydrostatic problem on equilibrium shapes of a drop adjacent to a horizontal rotating plane under gravity is considered. The mathematical model of the problem is built on the basis of the variational principle: the shape of the drop satisfies the minimum total energy for a given volume. The problem of the functional minimization is reduced to a system of nonlinear equations using the finite element method. To solve the system a Newton's iterative method is applied.Methods. The variational-difference approach (the finite element method) is used. The finite linear functions are chosen as basic functions.Results. Equilibrium shapes of a drop on a rotating plane are constructed by the finite element method in a wide range of defining parameters: Bond number, rotational Weber number and wetting angle. The influence of these parameters on the shape of a drop is investigated. The numerical results are matched with the results obtained using the iterative-difference approach over the entire range of physical stability with respect to axisymmetric perturbations.Conclusion. The finite element method responds to the loss of stability of a drop with respect to axisymmetric perturbations. Therefore it can be used to study the stability of the equilibrium of axisymmetric capillary surfaces.
Publisher
United Institute of Informatics Problems of the National Academy of Sciences of Belarus
Subject
General Earth and Planetary Sciences,General Environmental Science