Agata detector technology: recent progress and future developments

Author:

Eberth J.,Hess H.,Reiter P.,Bertoldo S.,Carraro C.,Maggioni G.,Napoli D. R.,Raniero W.,De Salvador D.

Abstract

Abstract$$\gamma $$ γ -ray tracking is based on a new generation of position sensitive high-purity germanium (HPGe) detectors. A novel type of cluster detector was successfully developed and assembled for the high-resolution $$\gamma $$ γ -ray spectrometer Advanced Gamma Tracking Array AGATA. The core part of the detector consists of three encapsulated, 36-fold segmented HPGe detectors which are operated in a common cryostat. The Ge crystal is hermetically sealed inside an aluminium can. All energy channels provide best energy resolution of core and segment signals for an extended energy range well above 50 MeV. A low cross-talk level was determined for the HPGe detectors and its preamplifier circuitry. Related cross-talk corrections are essential for highest energy resolution and improved position dependent pulse shape information. Recently a new encapsulation technology was put into operation which is based on a renewable metal elastic seal. HPGe detector developments are concerned with technologies for the production of p+ and n+ contacts, the segmentation and passivation of encapsulated HPGe crystals. Semiconductor processing research specifically aimed to develop a stable, thin and easy to segment n+ contact. A novel process, based on pulsed laser melting PLM, was successfully employed to produce very thin n+ and p+ contacts preserving the Ge purity. The contacts were segmented using a photolithographic process and then the intrinsic surface between contacts was passivated to assure the electrical insulation between them. A small detector prototype with three segments was made using these new techniques and then successfully tested.

Funder

Bundesministerium für Bildung und Forschung

ENSAR2

ENSAR

EU Eurons

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3