Reinforcement learning assisted recursive QAOA
-
Published:2024-01-17
Issue:1
Volume:11
Page:
-
ISSN:2662-4400
-
Container-title:EPJ Quantum Technology
-
language:en
-
Short-container-title:EPJ Quantum Technol.
Author:
Patel Yash J.,Jerbi Sofiene,Bäck Thomas,Dunjko Vedran
Abstract
AbstractIn recent years, variational quantum algorithms such as the Quantum Approximation Optimization Algorithm (QAOA) have gained popularity as they provide the hope of using NISQ devices to tackle hard combinatorial optimization problems. It is, however, known that at low depth, certain locality constraints of QAOA limit its performance. To go beyond these limitations, a non-local variant of QAOA, namely recursive QAOA (RQAOA), was proposed to improve the quality of approximate solutions. The RQAOA has been studied comparatively less than QAOA, and it is less understood, for instance, for what family of instances it may fail to provide high-quality solutions. However, as we are tackling -hard problems (specifically, the Ising spin model), it is expected that RQAOA does fail, raising the question of designing even better quantum algorithms for combinatorial optimization. In this spirit, we identify and analyze cases where (depth-1) RQAOA fails and, based on this, propose a reinforcement learning enhanced RQAOA variant (RL-RQAOA) that improves upon RQAOA. We show that the performance of RL-RQAOA improves over RQAOA: RL-RQAOA is strictly better on these identified instances where RQAOA underperforms and is similarly performing on instances where RQAOA is near-optimal. Our work exemplifies the potentially beneficial synergy between reinforcement learning and quantum (inspired) optimization in the design of new, even better heuristics for complex problems.
Funder
Total Austrian Science Fund SFB BeyondC European Commission Google Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Google AI Quantum and Collaborators, Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Boixo S, Broughton M, Buckley BB et al.. Hartree-Fock on a superconducting qubit quantum computer. Science. 2020;369(6507):1084–9. https://doi.org/10.1126/science.abb9811. 2. Jurcevic P, Javadi-Abhari A, Bishop LS, Lauer I, Bogorin DF, Brink M, Capelluto L, Günlük O, Itoko T, Kanazawa N, Kandala A, Keefe GA, Krsulich K, Landers W, Lewandowski EP, McClure DT, Nannicini G, Narasgond A, Nayfeh HM, Pritchett E, Rothwell MB, Srinivasan S, Sundaresan N, Wang C, Wei KX, Wood CJ, Yau J-B, Zhang EJ, Dial OE, Chow JM, Gambetta JM. Demonstration of quantum volume 64 on a superconducting quantum computing system. Quantum Sci Technol. 2021;6(2):025020. https://doi.org/10.1088/2058-9565/abe519. 3. Ebadi S, Wang TT, Levine H, Keesling A, Semeghini G, Omran A, Bluvstein D, Samajdar R, Pichler H, Ho WW, Choi S, Sachdev S, Greiner M, Vuletić V, Lukin MD. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature. 2021;595(7866):227–32. https://doi.org/10.1038/s41586-021-03582-4. 4. Gong M, Wang S, Zha C, Chen M-C, Huang H-L, Wu Y, Zhu Q, Zhao Y, Li S, Guo S, Qian H, Ye Y, Chen F, Ying C, Yu J, Fan D, Wu D, Su H, Deng H, Rong H, Zhang K, Cao S, Lin J, Xu Y, Sun L, Guo C, Li N, Liang F, Bastidas VM, Nemoto K, Munro WJ, Huo Y-H, Lu C-Y, Peng C-Z, Zhu X, Pan J-W. Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science. 2021;372(6545):948–52. https://doi.org/10.1126/science.abg7812. 5. Moll N, Barkoutsos P, Bishop LS, Chow JM, Cross A, Egger DJ, Filipp S, Fuhrer A, Gambetta JM, Ganzhorn M, Kandala A, Mezzacapo A, Müller P, Riess W, Salis G, Smolin J, Tavernelli I, Temme K. Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci Technol. 2018;3(3):030503. https://doi.org/10.1088/2058-9565/aab822.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|