Spectral entropy provides separation between Alzheimer’s disease patients and controls: a study of fNIRS

Author:

Ferdinando H.ORCID,Moradi S.,Korhonen V.,Helakari H.,Kiviniemi V.,Myllylä T.

Abstract

AbstractFunctional near-infrared spectroscopy (fNIRS) is commonly used as a non-invasive tool to measure cerebral neurovascular dynamics. Its potential for diagnostics of various brain disorders has been already demonstrated in many recent studies, including Alzheimer’s disease (AD). fNIRS studies are usually based on comparing hemoglobin measurements at baseline and during a specific task. At present, many proposed methods using fNIRS to diagnose AD involve certain tasks, which may be challenging for the elderly and patients with cognitive decline. Here, we propose a method to characterize AD patients and control in resting state, by applying spectral entropy (SE) analysis on oxyhemoglobin and deoxyhemoglobin, HbO and HbR, respectively, and total hemoglobin (HbT) based on fNIRS signals measured from the left and right sides of the forehead. We applied SE to very low frequency (VLF) (0.008–0.1 Hz), respiratory (0.1–0.6 Hz), and cardiac (0.6–5 Hz) bands to find out which band delivered the optimum result. Next, a t test with 0.05 significant level was performed to compare SE values of AD patients and controls. Results from the VLF band looked promising as SE values from AD patients were always significantly higher than those from controls. In addition, this phenomenon was consistent for both sides of the forehead. However, significant differences in SE values in the respiratory band were found from the left hemisphere only, and in the cardiac band from the right hemisphere only. SE value from the VLF band supports a strong argument that it provides good predictability related to the development of AD. We demonstrated that SE of brain fNIRS signal can be an useful biomarker for Alzheimer’s disease pathology.

Funder

Academy of Finland

Jane ja Aatos Erkon Säätiö

Riitta ja Jorma J. Takasen Säätiö Sr

Tekes

Infotech Oulu

University of Oulu including Oulu University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3