Fractal dimensions and machine learning for detection of Parkinson’s disease in resting-state electroencephalography

Author:

Lal UtkarshORCID,Chikkankod Arjun Vinayak,Longo Luca

Abstract

AbstractParkinson’s disease (PD) is an incurable neurological disorder that degenerates the cerebrospinal nervous system and hinders motor functions. Electroencephalography (EEG) signal analysis can provide reliable information regarding PD conditions. However, EEG is a complex, multichannel, and nonlinear signal with noise that problematizes identifying PD symptoms. A few studies have employed fractal dimension (FD) to extract distinguishing PD features from EEG signals. However, no exploratory study exists, as per our knowledge, on the efficiency of the different FD measures. We aim to conduct a comparative analysis of the various FDs that, as feature extraction measures, can discriminate PD patients who are ON and OFF medication from healthy controls using ML architecture. This study has implemented and analyzed several techniques for segmentation, feature extraction, and ML models. The results show that k-nearest neighbors (KNN) classifier with Higuchi FD and 90% overlap for segmented window delivers the highest accuracies, yielding a mean accuracy of $$99.65\pm 0.15\%$$ 99.65 ± 0.15 % for PD patients ON medication and $$99.45\pm 0.18\%$$ 99.45 ± 0.18 % for PD patients OFF medication, respectively. The model accurately identifies the signs of the disease in resting-state EEG with almost equivalent accuracy in both OFF and ON medication patients. To enhance the interpretability in our study, we leveraged XGB’s feature importance to generate brain topographic plots. This integration of explainable AI (XAI) enhanced the transparency and comprehensibility of our model’s classifications. Additionally, a comparison between the performance of FD and a few entropy measures has also been drawn to validate the significance of FD as a superior feature extraction measure. This study contributes to the body of knowledge with an architectural pipeline for detecting PD in resting-state EEG while emphasizing fractal dimension as an effective way of extracting salient features from EEG signals.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3