Author:
Paul Biswajit,Dhar Himangshu,Saha Biswajit
Abstract
AbstractTheories with higher derivatives involve linear instabilities in the Hamiltonian commonly known as Ostrogradski ghosts and can be viewed as a very serious problem during quantization. To cure this, we have considered the properties of antilinearity that can be found inherently in the non-Hermitian Hamiltonians. Owing to the existence of antilinearity, we can construct an operator, called the V-operator, which acts as an intertwining operator between the Hamiltonian and its Hermitian conjugate. We have used this V-operator to remove the linear momentum term from the higher derivative Hamiltonian by making it non-Hermitian in the first place via an isospectral similarity transformation. The final form of the Hamiltonian is free from the Ostrogradski ghosts under some restriction on the mass term.
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献