Higher-order nonlocal approach to classical and quantum mechanics through non-standard Lagrangians: The case of quantum wells and the quantum states of neutron in earth’s gravitational field

Author:

El-Nabulsi Rami Ahmad123ORCID,Anukool Waranont124ORCID

Affiliation:

1. Center of Excellence in Quantum Technology, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand

2. Quantum-Atom Optics Laboratory and Research Center for Quantum Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

3. Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic

4. Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

It is well-known that any dynamical system governed by a differential equation containing time derivatives higher than second order unavoidably holds unbounded energy solutions, dubbed ghosts that appear in the Hamiltonian. They correspond to instabilities displayed at the classical level. In this study, we show first that it is possible to construct in classical mechanics, characterized by non-standard Lagrangians and nonlocal-in-time kinetic energy, higher-order derivative theories that avoid the Ostrogradsky ghost. Second, we show that in the realm of quantum mechanics, higher-order discretized energies emerge in the theory which may lead to extended quantum mechanics formalism. The problem of quantum wells has been treated where we showed that negative energy and negative action, complexified energies and complexified actions may emerge in our formalism. We have also discussed the quantum motion of a neutron in the Earth’s gravitational field. It was observed that within the realm of higher-order non-standard Lagrangians, the quantum energies of the neutrons are higher than the energy levels obtained in the basic formalism.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3