Physics potential of the ESS$$\nu $$SB

Author:

Blennow M.,Fernandez-Martinez E.,Ota T.,Rosauro-Alcaraz S.ORCID

Abstract

AbstractThe ESS$$\nu $$νSB project proposes to base a neutrino “Super Beam” of unprecedented luminosity at the European Spallation Source. The original proposal identified the second peak of the oscillation probability as the optimal to maximize the discovery potential to leptonic CP violation. However this choice reduces the statistics at the detector and penalizes other complementary searches such as the determination of the atmospheric oscillation parameters, particularly the octant of $$\theta _{23}$$θ23 as well as the neutrino mass ordering. We explore how these shortcomings can be alleviated by the combination of the beam data with the atmospheric neutrino sample that would also be collected at the detector. We find that the combination not only improves very significantly these drawbacks, but also enhances both the CP violation discovery potential and the precision in the measurement of the CP violating phase, for which the facility was originally optimized, by lifting parametric degeneracies. We then reassess the optimization of the ESS$$\nu $$νSB setup when the atmospheric neutrino sample is considered, with an emphasis in performing a measurement of the CP violating phase as precise as possible. We find that for the presently preferred value of $$\delta \sim -\pi /2$$δ-π/2, shorter baselines and longer running time in neutrino mode would be optimal. In these conditions, a measurement better than $$14^\circ $$14 would be achievable for any value of the $$\theta _{23}$$θ23 octant and the mass ordering. Conversely, if present and next generation facilities were not able to discover CP violation, longer baselines and more even splitting between neutrino and neutrino modes would be preferable. These choices would allow a $$5 \sigma $$5σ discovery of CP violation for around a $$60\%$$60% of the possible values of $$\delta $$δ and to determine its value with a precision around $$6^\circ $$6 if it is close to 0 or $$\pi $$π.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3