Abstract
AbstractThe perturbative all-loop derivation of the NSVZ $$\beta $$
β
-function for $${{\mathcal {N}}}=1$$
N
=
1
supersymmetric gauge theories regularized by higher covariant derivatives is finalized by calculating the sum of singularities produced by quantum superfields. These singularities originate from integrals of double total derivatives and determine all contributions to the $$\beta $$
β
-function starting from the two-loop approximation. Their sum is expressed in terms of the anomalous dimensions of the quantum gauge superfield, of the Faddeev–Popov ghosts, and of the matter superfields. This allows obtaining the NSVZ equation in the form of a relation between the $$\beta $$
β
-function and these anomalous dimensions for the renormalization group functions defined in terms of the bare couplings. It holds for an arbitrary renormalization prescription supplementing the higher covariant derivative regularization. For the renormalization group functions defined in terms of the renormalized couplings we prove that in all loops one of the NSVZ schemes is given by the HD + MSL prescription.
Funder
Foundation for the Advancement of Theoretical Physics and Mathematics
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献