Abstract
AbstractThe electroweak (EW) sector of the Minimal Supersymmetric Standard Model (MSSM) can account for variety of experimental data. The lighest supersymmetric particle (LSP), which we take as the lightest neutralino, $${\tilde{\chi }}_{1}^0$$
χ
~
1
0
, can account for the observed Dark Matter (DM) content of the universe via coannihilation with the next-to-LSP (NLSP), while being in agreement with negative results from Direct Detection (DD) experiments. Owing to relatively small production cross-sections a comparably light EW sector of the MSSM is also in agreement with the unsuccessful searches at the LHC. Most importantly, the EW sector of the MSSM can account for the persistent $$3-4\,\sigma $$
3
-
4
σ
discrepancy between the experimental result for the anomalous magnetic moment of the muon, $$(g-2)_\mu $$
(
g
-
2
)
μ
, and its Standard Model (SM) prediction. Under the assumption that the $${\tilde{\chi }}_{1}^0$$
χ
~
1
0
provides the full DM relic abundance we first analyze which mass ranges of neutralinos, charginos and scalar leptons are in agreement with all experimental data, including relevant LHC searches. We find an upper limit of $$\sim 600 \,\, \mathrm {GeV}$$
∼
600
GeV
for the LSP and NLSP masses. In a second step we assume that the new result of the Run 1 of the “MUON G-2” collaboration at Fermilab yields a precision comparable to the existing experimental result with the same central value. We analyze the potential impact of the combination of the Run 1 data with the existing $$(g-2)_\mu $$
(
g
-
2
)
μ
data on the allowed MSSM parameter space. We find that in this case the upper limits on the LSP and NLSP masses are substantially reduced by roughly $$100 \,\, \mathrm {GeV}$$
100
GeV
. This would yield improved upper limits on these masses of $$\sim 500 \,\, \mathrm {GeV}$$
∼
500
GeV
. In this way, a clear target could be set for future LHC EW searches, as well as for future high-energy $$e^+e^-$$
e
+
e
-
colliders, such as the ILC or CLIC.
Funder
Spanish Red Consolider MultiDark
World Premier International Research Center Initiative (WPI), MEXT, Japan
IFT Centro de Excelencia Severo Ochoa
Spanish Agencia Estatal de Investigación (AEI) and the EU Fondo Europeo de Desarrollo Regional
MEINCOP Spain
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference120 articles.
1. A. Keshavarzi, D. Nomura, T. Teubner, Phys. Rev. D 101(1), 014029 (2020). arXiv:1911.00367 [hep-ph]
2. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, arXiv:1908.00921 [hep-ph]
3. J. Grange et al. [Muon g-2 Collaboration], arXiv:1501.06858 [physics.ins-det]
4. N. Aghanim et al. [Planck Collaboration], arXiv:1807.06209 [astro-ph.CO]
5. D.S. Akerib et al. [LUX Collaboration], Phys. Rev. Lett. 118(2), 021303 (2017). arXiv:1608.07648 [astro-ph.CO]
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献