$$(g-2)_\mu $$ and stau coannihilation: dark matter and collider analysis

Author:

Chakraborti ManimalaORCID,Heinemeyer Sven,Saha Ipsita

Abstract

AbstractSlepton coannihilation is one of the most promising scenarios that can bring the predicted Dark Matter (DM) abundance in the the Minimal Supersymmetric Standard Model (MSSM) into agreement with the experimental observation. In this scenario, the lightest supersymmetric particle (LSP), usually assumed to be the lightest neutralino, $$\tilde{\chi }_{1}^0$$ χ ~ 1 0 can serve as a Dark Matter (DM) candidate while the sleptons as the next-to-LSPs (NLSPs) lie close in mass. In our previous studies analyzing the electroweak sector of MSSM, a degeneracy between the three generations of sleptons was assumed for the sake of simplicity. In case of slepton coannihilation this directly links the smuons involved in the explanation for $$(g-2)_\mu $$ ( g - 2 ) μ to the coannihilating NLSPs required to explain the DM content of the universe. On the other hand, in well-motivated top-down models such degeneracy do not hold, and often the lighter stau turns out to be the NLSP at the electroweak (EW) scale, with the smuons (and selectrons) somewhat heavier. In this paper we analyze such a scenario at the EW scale assuming non-universal slepton masses where the first two generations of sleptons are taken to be mass-degenerate and heavier than the staus, enforcing stau coannihilation. We analyze the parameter space of the electroweak MSSM in the light of a variety of experimental data namely, the DM relic density and direct detection limits, LHC data and especially, the discrepancy between the experimental result for the anomalous magnetic moment of the muon, $$(g-2)_\mu $$ ( g - 2 ) μ , and its Standard Model (SM) prediction. We find an upper limit on the lightest neutralino mass, the lighter stau mass and the mass of the tau sneutrino of about $$\sim 550 \,\, {\textrm{GeV}}$$ 550 GeV . In contrast to the scenario with full degeneracy among the three families of sleptons, the upper limit on the light smuon/selectron mass moves up by $$\sim 200 \,\, {\textrm{GeV}}$$ 200 GeV . We analyze the DD prospects as well as the physics potential of the HL-LHC and a future high-energy $$e^+e^-$$ e + e - collider to investigate this scenario further. We find that the combination DD experiments and $$e^+e^-$$ e + e - collider searches with center of mass energies up to $$\sqrt{s} \sim 1100 \,\, {\textrm{GeV}}$$ s 1100 GeV can fully cover this scenario.

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3