Quark/gluon discrimination and top tagging with dual attention transformer

Author:

He Minxuan,Wang Daohan

Abstract

AbstractJet tagging is a crucial classification task in high energy physics. Recently the performance of jet tagging has been significantly improved by the application of deep learning techniques. In this study, we introduce a new architecture for jet tagging: the particle dual attention transformer (P-DAT). This novel transformer architecture stands out by concurrently capturing both global and local information, while maintaining computational efficiency. Regarding the self attention mechanism, we have extended the established attention mechanism between particles to encompass the attention mechanism between particle features. The particle attention module computes particle level interactions across all the particles, while the channel attention module computes attention scores between particle features, which naturally captures jet level interactions by taking all particles into account. These two kinds of attention mechanisms can complement each other. Further, we incorporate both the pairwise particle interactions and the pairwise jet feature interactions in the attention mechanism. We demonstrate the effectiveness of the P-DAT architecture in classic top tagging and quark–gluon discrimination tasks, achieving competitive performance compared to other benchmark strategies.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Foundations of automatic feature extraction at LHC–point clouds and graphs;The European Physical Journal Special Topics;2024-09-11

2. Learning to see R -parity violating scalar top decays;Physical Review D;2024-09-04

3. Streamlined jet tagging network assisted by jet prong structure;Journal of High Energy Physics;2024-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3