Shared Data and Algorithms for Deep Learning in Fundamental Physics

Author:

Benato LisaORCID,Buhmann ErikORCID,Erdmann Martin,Fackeldey PeterORCID,Glombitza JonasORCID,Hartmann NikolaiORCID,Kasieczka GregorORCID,Korcari WilliamORCID,Kuhr ThomasORCID,Steinheimer Jan,Stöcker Horst,Plehn Tilman,Zhou KaiORCID

Abstract

AbstractWe introduce a Python package that provides simple and unified access to a collection of datasets from fundamental physics research—including particle physics, astroparticle physics, and hadron- and nuclear physics—for supervised machine learning studies. The datasets contain hadronic top quarks, cosmic-ray-induced air showers, phase transitions in hadronic matter, and generator-level histories. While public datasets from multiple fundamental physics disciplines already exist, the common interface and provided reference models simplify future work on cross-disciplinary machine learning and transfer learning in fundamental physics. We discuss the design and structure and line out how additional datasets can be submitted for inclusion. As showcase application, we present a simple yet flexible graph-based neural network architecture that can easily be applied to a wide range of supervised learning tasks. We show that our approach reaches performance close to dedicated methods on all datasets. To simplify adaptation for various problems, we provide easy-to-follow instructions on how graph-based representations of data structures, relevant for fundamental physics, can be constructed and provide code implementations for several of them. Implementations are also provided for our proposed method and all reference algorithms.

Funder

bundesministerium für bildung und forschung

Universität Hamburg

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics,Computer Science (miscellaneous),Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OmniJet-α: the first cross-task foundation model for particle physics;Machine Learning: Science and Technology;2024-08-02

2. Exploring QCD matter in extreme conditions with Machine Learning;Progress in Particle and Nuclear Physics;2024-02

3. Quark/gluon discrimination and top tagging with dual attention transformer;The European Physical Journal C;2023-12-08

4. A normalized autoencoder for LHC triggers;SciPost Physics Core;2023-11-03

5. Application of graph networks to background rejection in Imaging Air Cherenkov Telescopes;Journal of Cosmology and Astroparticle Physics;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3