Cosmogenic background simulations for neutrinoless double beta decay with the DARWIN observatory at various underground sites
-
Published:2024-01-27
Issue:1
Volume:84
Page:
-
ISSN:1434-6052
-
Container-title:The European Physical Journal C
-
language:en
-
Short-container-title:Eur. Phys. J. C
Author:
, Adrover M., Althueser L., Andrieu B., Angelino E., Angevaare J. R., Antunovic B., Aprile E., Babicz M., Bajpai D., Barberio E., Baudis L., Bazyk M., Bell N., Bellagamba L., Biondi R., Biondi Y., Bismark A., Boehm C., Breskin A., Brookes E. J., Brown A., Bruno G., Budnik R., Capelli C., Cardoso J. M. R., Chauvin A., Cimental Chavez A. P., Colijn A. P., Conrad J., Cuenca-García J. J.ORCID, D’Andrea V., Decowski M. P., Deisting A., Di Gangi P., Diglio S., Doerenkamp M., Drexlin G., Eitel K., Elykov A., Engel R., Farrell S., Ferella A. D., Ferrari C., Fischer H., Flierman M., Fulgione W., Gaemers P., Gaior R., Galloway M., Garroum N., Ghosh S., Girard F., Glade-Beucke R., Glück F., Grandi L., Grigat J., Größle R., Guan H., Guida M., Hammann R., Hannen V., Hansmann-Menzemer S., Hargittai N., Hasegawa T., Hils C., Higuera A., Hiraoka K., Hoetzsch L., Iacovacci M., Itow Y., Jakob J., Jörg F., Kara M., Kavrigin P., Kazama S., Keller M., Kilminster B., Kleifges M., Kobayashi M., Kopec A., von Krosigk B., Kuger F., Landsman H., Lang R. F., Li I., Li S., Liang S., Lindemann S., Lindner M., Lombardi F., Loizeau J., Luce T., Ma Y., Macolino C., Mahlstedt J., Mancuso A., Marrodán Undagoitia T., Lopes J. A. M., Marignetti F., Martens K., Masbou J., Mastroianni S., Milutinovic S., Miuchi K., Miyata R., Molinario A., Monteiro C. M. B., Morå K., Morteau E., Mosbacher Y., Müller J., Murra M., Newstead J. L., Ni K., Oberlack U. G., Ostrovskiy I., Paetsch B., Pandurovic M., Pellegrini Q., Peres R., Pienaar J., Pierre M., Piotter M., Plante G., Pollmann T. R., Principe L., Qi J., Qin J., Rajado Silva M., Ramírez García D., Razeto A., Sakamoto S., Sanchez L., Sanchez-Lucas P., dos Santos J. M. F., Sartorelli G., Scaffidi A., Schulte P., Schultz-Coulon H.-C., Schulze Eißing H., Schumann M., Scotto Lavina L., Selvi M., Semeria F., Shagin P., Sharma S., Shen W., Silva M., Simgen H., Singh R., Solmaz M., Stanley O., Steidl M., Tan P.-L., Terliuk A., Thers D., Thümmler T., Tönnies F., Toschi F., Trinchero G., Trotta R., Tunnell C., Urquijo P., Valerius K., Vecchi S., Vetter S., Volta G., Vorkapic D., Wang W., Weerman K. M., Weinheimer C., Weiss M., Wenz D., Wittweg C., Wolf J., Wolf T., Wu V. H. S., Wurm M., Xing Y., Yamashita M., Ye J., Zavattini G., Zuber K.
Abstract
AbstractXenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With $$40\,\textrm{t}$$
40
t
of liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay ($$0\upnu \upbeta \upbeta $$
0
ν
β
β
), and axion-like particles (ALPs). Although cosmic muons are a source of background that cannot be entirely eliminated, they may be greatly diminished by placing the detector deep underground. In this study, we used Monte Carlo simulations to model the cosmogenic background expected for the DARWIN observatory at four underground laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We present here the results of simulations performed to determine the production rate of $${}^{137}$$
137
Xe, the most crucial isotope in the search for $$0\upnu \upbeta \upbeta $$
0
ν
β
β
of $${}^{136}$$
136
Xe. Additionally, we explore the contribution that other muon-induced spallation products, such as other unstable xenon isotopes and tritium, may have on the cosmogenic background.
Funder
US National Science Foundation Dutch Science Council H2020 European Research Council Horizon 2020 Framework Programme Ministry of Education, Science and Technological Development of the Republic of Serbia Deutsche Forschungsgemeinschaft GRK-2149 PortugueseFCT Max-Planck-Gesellschaft H2020 Marie Skłodowska-Curie Actions Science and Technology Facilities Council
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. XENON Collaboration, E. Aprile et al., Dark matter search results from a one ton-year exposure of XENON1T. Phys. Rev. Lett. 121, 111302 (2018). https://doi.org/10.1103/PhysRevLett.121.111302. arXiv:1805.12562 2. LUX Collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 118, 021303 (2017). https://doi.org/10.1103/PhysRevLett.118.021303. arXiv:1608.07648 3. XENON Collaboration, E. Aprile et al., First dark matter search with nuclear recoils from the XENONnT experiment. Phys. Rev. Lett. 131, 041003 (2023). https://doi.org/10.1103/PhysRevLett.131.041003 4. LUX-ZEPLIN Collaboration, J. Aalbers et al., First dark matter search results from the LUX-ZEPLIN (LZ) experiment. Phys. Rev. Lett. 131, 041002 (2023). https://doi.org/10.1103/PhysRevLett.131.041002 5. PandaX-4T Collaboration, Y. Meng et al., Dark matter search results from the PandaX-4T commissioning run. Phys. Rev. Lett. 127, 261802 (2021). https://doi.org/10.1103/PhysRevLett.127.261802. arXiv:2107.13438
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|