Photon Induced Scintillation Amplifier — The PISA concept

Author:

Monteiro C.M.B.ORCID,Mano R.D.P.ORCID,Roque R.J.C.ORCID,Neves J.P.G.

Abstract

Abstract Photoelectron signal amplification in gas photomultipliers (GPMs) is achieved through charge avalanche development in the holes of a cascade of hole-type microperforated foils. When a voltage difference is applied between the metal film electrodes that are deposited on both surfaces of those foils, an electric field with a high intensity is established inside the holes. As a consequence, each electron entering those holes produces an electron avalanche that emerges from the other side of the holes. A cascade of few foils is necessary for a single primary electron to produce a final avalanche intense enough to be read out, in the anode electrode, above the electronic noise. We propose the Photon Induced Scintillation Amplifier (PISA), where the photoelectron signal amplification is obtained by reading out the photon scintillation produced in the charge avalanches of solely one Micro-Hole-and-Strip-Plate-type microstructure with SiPMs. The optical readout has the advantage of having the extra gain from the photosensor and is less sensitive to electronic noise. A large photosensor gain produces large output signals that can travel over long distances without significant degradation. This allows for the readout electronics to be placed away from the photosensor and, thus, from the detector sensitive volume. The scintillation readout plane can be made of a 2D-array of SiPMs, with size and pitch in accordance with the needed scintillation level and position resolution. A first basic prototype was assembled to present a proof-of-principle of the PISA concept.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3