Elsa: enhanced latent spaces for improved collider simulations

Author:

Nachman BenjaminORCID,Winterhalder RamonORCID

Abstract

AbstractSimulations play a key role for inference in collider physics. We explore various approaches for enhancing the precision of simulations using machine learning, including interventions at the end of the simulation chain (reweighting), at the beginning of the simulation chain (pre-processing), and connections between the end and beginning (latent space refinement). To clearly illustrate our approaches, we use W + jets matrix element surrogate simulations based on normalizing flows as a prototypical example. First, weights in the data space are derived using machine learning classifiers. Then, we pull back the data-space weights to the latent space to produce unweighted examples and employ the Latent Space Refinement (Laser) protocol using Hamiltonian Monte Carlo. An alternative approach is an augmented normalizing flow, which allows for different dimensions in the latent and target spaces. These methods are studied for various pre-processing strategies, including a new and general method for massive particles at hadron colliders that is a tweak on the widely-used RamboOnDiet mapping. We find that modified simulations can achieve sub-percent precision across a wide range of phase space.

Funder

Office of Science

Fonds De La Recherche Scientifique - FNRS

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference77 articles.

1. ATLAS Collaboration, Technical design report for the phase-II upgrade of the ATLAS TDAQ system. Technical report. CERN, Geneva, Sept 2017

2. CMS Collaboration, The phase-2 upgrade of the CMS DAQ interim technical design report. Technical report. CERN, Geneva, Sept 2017

3. I.J. Goodfellow et al., Generative adversarial nets, in Conference on Neural Information Processing Systems, vol. 2 (2014), p. 2672

4. A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, A.A. Bharath, Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35, 53 (2018). https://doi.org/10.1109/msp.2017.2765202

5. D.P. Kingma, M. Welling, Auto-encoding variational bayes. arXiv:1312.6114

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3