Light-front wavefunctions of mesons by design

Author:

Li MeijianORCID,Li YangORCID,Chen GuangyaoORCID,Lappi TuomasORCID,Vary James P.ORCID

Abstract

AbstractWe develop a mechanism to build the light-front wavefunctions (LFWFs) of meson bound states on a small-sized basis function representation. Unlike in a standard Hamiltonian formalism, the Hamiltonian in this method is implicit, and the information of the system is carried directly by the functional form and adjustable parameters of the LFWFs. In this work, we model the LFWFs for four charmonium states, $$\eta _c$$ η c , $$J/\psi $$ J / ψ , $$\psi '$$ ψ , and $$\psi (3770)$$ ψ ( 3770 ) as superpositions of orthonormal basis functions. We choose the basis functions as eigenfunctions of an effective Hamiltonian, which has a longitudinal confining potential in addition to the transverse confining potential from light-front holographic QCD. We determine the basis function parameters and superposition coefficients by employing both guidance from the nonrelativistic description of the meson states and the experimental measurements of the meson decay widths. With the obtained wavefunctions, we study the features of those meson states, including charge radii and parton distribution functions. We use the $$J/\psi $$ J / ψ LFWF to calculate the meson production in diffractive deep inelastic scattering and ultra-peripheral heavy-ion collisions, and the $$\eta _c$$ η c LFWF to calculate its diphoton transition form factor. Both results show good agreement with experiments. The obtained LFWFs have simple-functional forms and can be readily used to predict additional experimental observables.

Funder

STRONG-2020

U.S. Department of Energy

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3