Fast and precise model calculation for KATRIN using a neural network

Author:

Karl ChristianORCID,Eller Philipp,Mertens Susanne

Abstract

AbstractWe present a fast and precise method to approximate the physics model of the Karlsruhe Tritium Neutrino (KATRIN) experiment using a neural network. KATRIN is designed to measure the effective electron anti-neutrino mass $$m_\nu $$ m ν using the kinematics of $$\upbeta $$ β -decay with a sensitivity of 200 meV at 90% confidence level. To achieve this goal, a highly accurate model prediction with relative errors below the $$10^{-4}$$ 10 - 4 -level is required. Using the regular numerical model for the analysis of the final KATRIN dataset is computationally extremely costly or requires approximations to decrease the computation time. Our solution to reduce the computational requirements is to train a neural network to learn the predicted $$\upbeta $$ β -spectrum and its dependence on all relevant input parameters. This results in a speed-up of the calculation by about three orders of magnitude, while meeting the stringent accuracy requirements of KATRIN.

Funder

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference19 articles.

1. ATLAS Collaboration, Atlfast3: the next generation of fast simulation in atlas (2021)

2. CMS Collaboration, S Sekmen, Recent developments in cms fast simulation (2017)

3. IceCube Collaboration, M.G. Aartsen et al., Computational techniques for the analysis of small signals in high-statistics neutrino oscillation experiments (2019)

4. KATRIN Collaboration, Katrin design report 2004. Technical report, Forschungszentrum, Karlsruhe, 2005. 51.54.01; LK 01; Auch: NPI ASCR Rez EXP-01/2005; MS-KP-0501

5. KATRIN Collaboration, M. Aker et al., First direct neutrino-mass measurement with sub-ev sensitivity (2021)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. KATRIN: status and prospects for the neutrino mass and beyond;Journal of Physics G: Nuclear and Particle Physics;2022-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3