Author:
Chen Joe Zhiyu,Oldengott Isabel M.,Pierobon Giovanni,Wong Yvonne Y. Y.
Abstract
AbstractWe consider invisible neutrino decay $$\nu _H \rightarrow \nu _l + \phi $$
ν
H
→
ν
l
+
ϕ
in the ultra-relativistic limit and compute the neutrino anisotropy loss rate relevant for the cosmic microwave background (CMB) anisotropies. Improving on our previous work which assumed massless$$\nu _l$$
ν
l
and $$\phi $$
ϕ
, we reinstate in this work the daughter neutrino mass $$m_{\nu l}$$
m
ν
l
in a manner consistent with the experimentally determined neutrino mass splittings. We find that a nonzero $$m_{\nu l}$$
m
ν
l
introduces a new phase space factor in the loss rate $$\varGamma _\mathrm{T}$$
Γ
T
proportional to $$(\varDelta m_\nu ^2/m_{\nu _H}^2)^2$$
(
Δ
m
ν
2
/
m
ν
H
2
)
2
in the limit of a small squared mass gap between the parent and daughter neutrinos, i.e., $$\varGamma _\mathrm{T} \sim (\varDelta m_\nu ^2/m_{\nu H}^2)^2 (m_{\nu H}/E_\nu )^5 (1/\tau _0)$$
Γ
T
∼
(
Δ
m
ν
2
/
m
ν
H
2
)
2
(
m
ν
H
/
E
ν
)
5
(
1
/
τ
0
)
, where $$\tau _0$$
τ
0
is the $$\nu _H$$
ν
H
rest-frame lifetime. Using a general form of this result, we update the limit on $$\tau _0$$
τ
0
using the Planck 2018 CMB data. We find that for a parent neutrino of mass $$m_{\nu H} \lesssim 0.1$$
m
ν
H
≲
0.1
eV, the new phase space factor weakens the constraint on its lifetime by up to a factor of 50 if $$\varDelta m_\nu ^2$$
Δ
m
ν
2
corresponds to the atmospheric mass gap and up to $$10^{5}$$
10
5
if the solar mass gap, in comparison with naïve estimates that assume $$m_{\nu l}=0$$
m
ν
l
=
0
. The revised constraints are (i) $$\tau ^0 > rsim (6 \rightarrow 10) \times 10^5$$
τ
0
≳
(
6
→
10
)
×
10
5
s and $$\tau ^0 > rsim (400 \rightarrow 500)$$
τ
0
≳
(
400
→
500
)
s if only one neutrino decays to a daughter neutrino separated by, respectively, the atmospheric and the solar mass gap, and (ii) $$\tau ^0 > rsim (2 \rightarrow 6) \times 10^7$$
τ
0
≳
(
2
→
6
)
×
10
7
s in the case of two decay channels with one near-common atmospheric mass gap. In contrast to previous, naïve limits which scale as $$m_{\nu H}^5$$
m
ν
H
5
, these mass spectrum-consistent $$\tau _0$$
τ
0
constraints are remarkably independent of the parent mass and open up a swath of parameter space within the projected reach of IceCube and other neutrino telescopes in the next two decades.
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference54 articles.
1. Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020). arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)]
2. KATRIN Collaboration, M. Aker et al. Improved upper limit on the neutrino mass from a direct kinematic method by KATRIN. Phys. Rev. Lett. 123(22), 221802 (2019). arXiv:1909.06048 [hep-ex]
3. S. Hannestad, Structure formation with strongly interacting neutrinos - Implications for the cosmological neutrino mass bound. JCAP 02, 011 (2005). arXiv:astro-ph/0411475
4. S. Hannestad, G. Raffelt, Constraining invisible neutrino decays with the cosmic microwave background. Phys. Rev. D 72, 103514 (2005). arXiv:hep-ph/0509278 [hep-ph]
5. A. Basboll, O.E. Bjaelde, S. Hannestad, G.G. Raffelt, Are cosmological neutrinos free-streaming? Phys. Rev. D 79, 043512 (2009). arXiv:0806.1735 [astro-ph]
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献