Review of Hubble tension solutions with new SH0ES and SPT-3G data

Author:

Khalife Ali RidaORCID,Zanjani Maryam Bahrami,Galli Silvia,Günther Sven,Lesgourgues JulienORCID,Benabed KarimORCID

Abstract

Abstract We present an updated analysis of eleven cosmological models that may help reduce the Hubble tension, which now reaches the 6σ level when considering the latest SH0ES measurement versus recent CMB and BAO data, assuming ΛCDM. Specifically, we look at five classical extensions of ΛCDM (with massive neutrinos, spatial curvature, free-streaming or self-interacting relativistic relics, or dynamical dark energy) and six elaborate models featuring either a time-varying electron mass, early dark energy or some non-trivial interactions in the neutrino sector triggered by a light Majoron. We improve over previous works in several ways. We include the latest data from the South Pole Telescope as well as the most recent measurement of the Hubble rate by the SH0ES collaboration. We treat the summed neutrino mass as a free parameter in most of our models, which reveals interesting degeneracies and constraints. We define additional metrics to assess the potential of a model to reduce or even solve the Hubble tension. We validate an emulator that uses active learning to train itself during each parameter inference run for any arbitrary model. We find that the time-varying electron mass and the Majoron models are now ruled out at more than 3σ. Models with a time-varying electron mass and spatial curvature or with early dark energy reduce the tension to 1.0-2.9σ. Nevertheless, none of the models considered in this work is favored with enough statistical significance to become the next concordance model of Cosmology.

Publisher

IOP Publishing

Reference165 articles.

1. Planck 2013 results. XVI. Cosmological parameters;Planck Collaboration;Astron. Astrophys.,2014

2. Planck and the local Universe: Quantifying the tension;Verde;Phys. Dark Univ.,2013

3. Tensions between the Early and the Late Universe;Verde;Nature Astron.,2019

4. In the realm of the Hubble tension—a review of solutions;Di Valentino;Class. Quant. Grav.,2021

5. The H0 Olympics: A fair ranking of proposed models;Schöneberg;Phys. Rept.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3