Estimation of the number of counts on a particle counter detector with full time resolution

Author:

Gesualdi FlaviaORCID,Supanitsky Alberto Daniel

Abstract

AbstractWe present a general method for estimating the number of particles impinging on a segmented counter or, in general, on a counter with sub-units. We account for unresolved particles, i.e., the effect of two or more particles hitting the same sub-unit almost simultaneously. To achieve full time resolution we account for the dead time that occurs after the first time-bin of a particle signal. This general counting method can be applied to counting muons in existing detectors like the Underground Muon Detector of the Pierre Auger Observatory. We therefore use the latter as a study case to test the performance of our method and to compare it to other methods from literature. Our method proves to perform with little bias, and also provides an estimate of the number of particles as a function of time (as seen by the detector) to a single time-bin resolution. In this context, the new method can be useful for reconstructing parameters sensitive to cosmic ray mass, which are key to unveiling the origin of cosmic rays.

Funder

High Performance and Cloud Computing Group at the Zentrum für Datenverarbeitung of the University of Tübingen, the state of Baden-Württemberg through bwHPC and the German Research Foundation

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3