Massive white dwarfs in $$f(\mathtt {R,L_m})$$ gravity
-
Published:2022-06-18
Issue:6
Volume:82
Page:
-
ISSN:1434-6052
-
Container-title:The European Physical Journal C
-
language:en
-
Short-container-title:Eur. Phys. J. C
Author:
Lobato R. V.,Carvalho G. A.,Kelkar N. G.,Nowakowski M.
Abstract
AbstractIn this work, we investigate the equilibrium configurations of massive white dwarfs (MWD) in the context of modified gravity, namely $$f(\mathtt {R,L_m})$$
f
(
R
,
L
m
)
gravity, where $$\mathtt {R}$$
R
stands for the Ricci scalar and $$\mathtt {L_m}$$
L
m
is the Lagrangian matter density. We focused on the specific case $$f(\mathtt {R,L_m})= \mathtt {R}/2 + \mathtt {L_m}+ \sigma \mathtt {R}\mathtt {L_m}$$
f
(
R
,
L
m
)
=
R
/
2
+
L
m
+
σ
R
L
m
, i.e., we have considered a non-minimal coupling between the gravity field and the matter field, with $$\sigma $$
σ
being the coupling constant. For the first time, the theory is applied to white dwarfs, in particular to study massive white dwarfs, which is a topic of great interest in the last years. The equilibrium configurations predict maximum masses which are above the Chandrasekhar mass limit. The most important effect of the theory is to increase significantly the mass for stars with radius < 2000 km. We found that the theory can accommodate the super-Chandrasekhar white dwarfs for different star compositions. Apart from this, the theory recovers the General Relativity results for stars with radii larger than 3000 km, independent of the value of $$\sigma $$
σ
.
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference89 articles.
1. D. Andrew Howell, M. Sullivan, P.E. Nugent, R.S. Ellis, A.J. Conley, D. Le Borgne, R.G. Carlberg, J. Guy, D. Balam, S. Basa, D. Fouchez, I.M. Hook, E.Y. Hsiao, J.D. Neill, R. Pain, K.M. Perrett, C.J. Pritchet, Nature 443(7109), 308 (2006). https://doi.org/10.1038/nature05103 2. M. Hicken, P.M. Garnavich, J.L. Prieto, S. Blondin, D.L. DePoy, R.P. Kirshner, J. Parrent, Astrophys. J. Lett. 669(1), L17 (2007). https://doi.org/10.1086/523301 3. M. Yamanaka, K.S. Kawabata, K. Kinugasa, M. Tanaka, A. Imada, K. Maeda, K. Nomoto, A. Arai, S. Chiyonobu, Y. Fukazawa, O. Hashimoto, S. Honda, Y. Ikejiri, R. Itoh, Y. Kamata, N. Kawai, T. Komatsu, K. Konishi, D. Kuroda, H. Miyamoto, S. Miyazaki, O. Nagae, H. Nakaya, T. Ohsugi, T. Omodaka, N. Sakai, M. Sasada, M. Suzuki, H. Taguchi, H. Takahashi, H. Tanaka, M. Uemura, T. Yamashita, K. Yanagisawa, M. Yoshida, Astrophys. J. Lett. 707(2), L118 (2009). https://doi.org/10.1088/0004-637x/707/2/l118 4. R.A. Scalzo, G. Aldering, P. Antilogus, C. Aragon, S. Bailey, C. Baltay, S. Bongard, C. Buton, M. Childress, N. Chotard, Y. Copin, H.K. Fakhouri, A. Gal-Yam, E. Gangler, S. Hoyer, M. Kasliwal, S. Loken, P. Nugent, R. Pain, E. Pécontal, R. Pereira, S. Perlmutter, D. Rabinowitz, A. Rau, G. Rigaudier, K. Runge, G. Smadja, C. Tao, R.C. Thomas, B. Weaver, C. Wu, Astrophys. J. 713(2), 1073 (2010). https://doi.org/10.1088/0004-637x/713/2/1073 5. S. Taubenberger, S. Benetti, M. Childress, R. Pakmor, S. Hachinger, P.A. Mazzali, V. Stanishev, N. Elias-Rosa, I. Agnoletto, F. Bufano, M. Ergon, A. Harutyunyan, C. Inserra, E. Kankare, M. Kromer, H. Navasardyan, J. Nicolas, A. Pastorello, E. Prosperi, F. Salgado, J. Sollerman, M. Stritzinger, M. Turatto, S. Valenti, W. Hillebrandt, Mon. Not. R. Astron. Soc. 412(4), 2735 (2011). https://doi.org/10.1111/j.1365-2966.2010.18107.x
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|