Abstract
AbstractWe show how to deal with uncertainties on the Standard Model predictions in an agnostic new physics search strategy that exploits artificial neural networks. Our approach builds directly on the specific Maximum Likelihood ratio treatment of uncertainties as nuisance parameters for hypothesis testing that is routinely employed in high-energy physics. After presenting the conceptual foundations of our method, we first illustrate all aspects of its implementation and extensively study its performances on a toy one-dimensional problem. We then show how to implement it in a multivariate setup by studying the impact of two typical sources of experimental uncertainties in two-body final states at the LHC.
Funder
Ministero dell’Istruzione, dell’Università e della Ricerca
H2020 Excellent Science
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference83 articles.
1. R.T. D’Agnolo, A. Wulzer, Learning new physics from a machine. Phys. Rev. D 99, 015014 (2019). https://doi.org/10.1103/PhysRevD.99.015014arXiv:1806.02350
2. R.T. D’Agnolo, G. Grosso, M. Pierini, A. Wulzer, M. Zanetti, Learning multivariate new physics. Eur. Phys. J. C 81, 89 (2021). https://doi.org/10.1140/epjc/s10052-021-08853-yarXiv:1912.12155
3. A. Elwood, D. Krücker, Direct optimisation of the discovery significance when training neural networks to search for new physics in particle colliders. arXiv:1806.00322
4. L.-G. Xia, QBDT, a new boosting decision tree method with systematical uncertainties into training for High Energy Physics. Nucl. Instrum. Methods A 930, 15 (2019). https://doi.org/10.1016/j.nima.2019.03.088arXiv:1810.08387
5. C. Englert, P. Galler, P. Harris, M. Spannowsky, Machine learning uncertainties with adversarial neural networks. Eur. Phys. J. C 79, 4 (2019). https://doi.org/10.1140/epjc/s10052-018-6511-8arXiv:1807.08763
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献