From optimal observables to machine learning: an effective-field-theory analysis of e+e− → W+W− at future lepton colliders

Author:

Chai Shengdu,Gu Jiayin,Li LingfengORCID

Abstract

Abstract We apply machine-learning techniques to the effective-field-theory analysis of the e+eW+W processes at future lepton colliders, and demonstrate their advantages in comparison with conventional methods, such as optimal observables. In particular, we show that machine-learning methods are more robust to detector effects and backgrounds, and could in principle produce unbiased results with sufficient Monte Carlo simulation samples that accurately describe experiments. This is crucial for the analyses at future lepton colliders given the outstanding precision of the e+eW+W measurement (~ 104 in terms of anomalous triple gauge couplings or even better) that can be reached. Our framework can be generalized to other effective-field-theory analyses, such as the one of e+e$$ t\overline{t} $$ t t ¯ or similar processes at muon colliders.

Publisher

Springer Science and Business Media LLC

Reference82 articles.

1. M. Narain et al., The Future of U.S. Particle Physics — The Snowmass 2021 Energy Frontier Report, arXiv:2211.11084 [INSPIRE].

2. CEPC Physics Study Group, The Physics potential of the CEPC. Prepared for the U.S. Snowmass Community Planning Exercise (Snowmass 2021), in the proceedings of the Snowmass 2021, Seattle, U.S.A., 17–26 July 2022, arXiv:2205.08553 [INSPIRE].

3. G. Bernardi et al., The Future Circular Collider: a Summary for the U.S. 2021 Snowmass Process, arXiv:2203.06520 [INSPIRE].

4. ILC International Development Team collaboration, The International Linear Collider: Report to Snowmass 2021, arXiv:2203.07622 [INSPIRE].

5. CLICdp and CLIC collaborations, The Compact Linear Collider (CLIC) — 2018 Summary Report, arXiv:1812.06018 [https://doi.org/10.23731/CYRM-2018-002] [INSPIRE].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3