DeepXS: fast approximation of MSSM electroweak cross sections at NLO

Author:

Otten SydneyORCID,Rolbiecki Krzysztof,Caron Sascha,Kim Jong-Soo,Ruiz de Austri Roberto,Tattersall Jamie

Abstract

AbstractWe present a deep learning solution to the prediction of particle production cross sections over a complicated, high-dimensional parameter space. We demonstrate the applicability by providing state-of-the-art predictions for the production of charginos and neutralinos at the Large Hadron Collider (LHC) at the next-to-leading order in the phenomenological MSSM-19 and explicitly demonstrate the performance for $$pp\rightarrow \tilde{\chi }^+_1\tilde{\chi }^-_1,$$ppχ~1+χ~1-,$$\tilde{\chi }^0_2\tilde{\chi }^0_2$$χ~20χ~20 and $$\tilde{\chi }^0_2\tilde{\chi }^\pm _1$$χ~20χ~1± as a proof of concept which will be extended to all SUSY electroweak pairs. We obtain errors that are lower than the uncertainty from scale and parton distribution functions with mean absolute percentage errors of well below $$0.5\,\%$$0.5% allowing a safe inference at the next-to-leading order with inference times that improve the Monte Carlo integration procedures that have been available so far by a factor of $$\mathscr {O}(10^7)$$O(107) from $$\mathscr {O}(\mathrm{min})$$O(min) to $$\mathscr {O}(\mu \mathrm{s})$$O(μs) per evaluation.

Funder

H2020 Marie Sklodowska-Curie Actions

Netherlands eScience Center

National Science Center, Poland

Ministerio de Economía y Competitividad

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3