The end of the particle era?

Author:

Harlander RobertORCID,Martinez Jean-PhilippeORCID,Schiemann Gregor

Abstract

AbstractThe discovery of the Higgs boson in 2012 at CERN completed the experimental confirmation of the Standard Model particle spectrum. Current theoretical insights and experimental data are inconclusive concerning the expectation of future discoveries. While new physics may still be within reach of the LHC or one of its successor experiments, it is also possible that the mass of particles beyond those of the Standard Model is far beyond the energy reach of any conceivable particle collider. We thus have to face the possibility that the age of “on-shell discoveries” of new particles may belong to the past and that we may soon witness a change in the scientists' perception of discoveries in fundamental physics. This article discusses the relevance of this questioning and addresses some of its potential far-reaching implications through the development, first, of a historical perspective on the concept of particle. This view is prompt to reveal important specificities of the development of particle physics. In particular, it underlines the close relationship between the evolution of observational methods and the understanding of the very idea of particle. Combining this with an analysis of the current situation of high-energy physics, this leads us to the suggestion that the particle era in science must undergo an important conceptual reconfiguration.

Funder

Deutsche Forschungsgemeinschaft

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AutoEFT: Automated operator construction for effective field theories;Computer Physics Communications;2024-07

2. Quo Vadis Particula Physica?;Entropy;2024-04-26

3. The development of computational methods for Feynman diagrams;The European Physical Journal H;2024-03-01

4. Correction: The end of the particle era?;The European Physical Journal H;2023-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3