The development of computational methods for Feynman diagrams

Author:

Harlander Robert V.ORCID,Martinez Jean-PhilippeORCID

Abstract

AbstractOver the last 70 years, Feynman diagrams have played an essential role in the development of many theoretical predictions derived from the standard model Lagrangian. In fact, today they have become an essential and seemingly irreplaceable tool in quantum field theory calculations. In this article, we propose to explore the development of computational methods for Feynman diagrams with a special focus on their automation, drawing insights from both theoretical physics and the history of science. From the latter perspective, the article particularly investigates the emergence of computer algebraic programs, such as the pioneering , , and , designed to handle the intricate calculations associated with Feynman diagrams. This sheds light on the many challenges faced by physicists when working at higher orders in perturbation theory and reveal, as exemplified by the test of the validity of quantum electrodynamics at the turn of the 1960s and 1970s, the indispensable necessity of computer-assisted procedures. In the second part of the article, a comprehensive overview of the current state of the algorithmic evaluation of Feynman diagrams is presented from a theoretical point of view. It emphasizes the key algorithmic concepts employed in modern perturbative quantum field theory computations and discusses the achievements, ongoing challenges, and potential limitations encountered in the application of the Feynman diagrammatic method. Accordingly, we attribute the enduring significance of Feynman diagrams in contemporary physics to two main factors: the highly algorithmic framework developed by physicists to tackle these diagrams and the successful advancement of algebraic programs used to process the involved calculations associated with them.

Funder

Deutsche Forschungsgemeinschaft

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3