Brain-inspired computing systems: a systematic literature review

Author:

Zolfagharinejad Mohamadreza,Alegre-Ibarra Unai,Chen Tao,Kinge Sachin,van der Wiel Wilfred G.ORCID

Abstract

AbstractBrain-inspired computing is a growing and interdisciplinary area of research that investigates how the computational principles of the biological brain can be translated into hardware design to achieve improved energy efficiency. Brain-inspired computing encompasses various subfields, including neuromorphic and in-memory computing, that have been shown to outperform traditional digital hardware in executing specific tasks. With the rising demand for more powerful yet energy-efficient hardware for large-scale artificial neural networks, brain-inspired computing is emerging as a promising solution for enabling energy-efficient computing and expanding AI to the edge. However, the vast scope of the field has made it challenging to compare and assess the effectiveness of the solutions compared to state-of-the-art digital counterparts. This systematic literature review provides a comprehensive overview of the latest advances in brain-inspired computing hardware. To ensure accessibility for researchers from diverse backgrounds, we begin by introducing key concepts and pointing out respective in-depth topical reviews. We continue with categorizing the dominant hardware platforms. We highlight various studies and potential applications that could greatly benefit from brain-inspired computing systems and compare their reported computational accuracy. Finally, to have a fair comparison of the performance of different approaches, we employ a standardized normalization approach for energy efficiency reports in the literature. Graphical abstract

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Deutsche Forschungsgemeinschaft

Toyota Motor Europe

Publisher

Springer Science and Business Media LLC

Reference240 articles.

1. W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, IEEE Internet Things J. 3(5), 637 (2016)

2. S.F. Wamba, S. Akter, A. Edwards, G. Chopin, D. Gnanzou, Int. J. Prod. Econ. 165, 234 (2015)

3. C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan et al., Machine learning at Facebook: understanding inference at the edge. In: 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019 (pp. 331): IEEE

4. R. Dahiya, N. Yogeswaran, F. Liu, L. Manjakkal, E. Burdet, V. Hayward et al., Proc. IEEE 107(10), 2016 (2019)

5. A. Morán, V. Canals, F. Galan-Prado, C.F. Frasser, D. Radhakrishnan, S. Safavi et al., Cogn. Comput. 1, 1–9 (2021)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3