Thermal neutron conversion by high purity 10B-enriched layers: PLD-growth, thickness-dependence and neutron-detection performances

Author:

Caricato Anna PaolaORCID,Cesaria Maura,Finocchiaro Paolo,Amaducci Simone,Longhitano Fabio,Provenzano Chiara,Marra Marcella,Martino Maurizio,Aziz Muhammad Rizwan,Serra Antonio,Manno Daniela,Calcagnile Lucio,Quarta Gianluca

Abstract

AbstractNeutron applications and detection are of paramount importance in industry, medicine, scientific research, homeland security, production of extreme UV optics and so on. Neutron detection requires a converter element that, as a result of its interaction with neutrons, produces reaction products (mainly charged particles) whose detection can be correlated with the neutron flux. Reduced availability and increased cost of the most used converter element, 3He, have triggered research efforts for alternative materials, proper deposition methods and new detector architectures. 10B converter is a valid alternative to 3He thanks to its high thermal neutron cross section and relatively high Q value. In this paper we report on the room temperature Pulsed Laser Deposition (PLD) of high quality and uniform 10B films with the expected density, different thickness values (0.5, 1.0, 1.2, 1.5 and 2.0 μm) and uniform thickness over a circular area of about 30 mm in diameter. Additionally, they are adherent to the substrate with a negligible presence of contaminants. The conversion properties of such 10B coatings coupled to a Si solid state detector are studied upon exposure to a neutron flux from an Am-Be neutron source (2.2·106 n/s). The experimental results, compared with spectra simulated by using a GEANT4 code, present a good agreement and efficiencies of the order of a few percent.

Funder

instituto nazionale di fisica nucleare

Open access funding provided by Università del Salento within the CRUI-CARE Agreement

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Fluid Flow and Transfer Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3