Development of a High-Efficiency Device for Thermal Neutron Detection Using a Sandwich of Two High-Purity 10B Enriched Layers

Author:

Provenzano Chiara12,Marra Marcella23,Caricato Anna Paola23ORCID,Finocchiaro Paolo4ORCID,Amaducci Simone4ORCID,Longhitano Fabio5ORCID,Martino Maurizio3ORCID,Poma Gaetano Elio4ORCID,Quarta Gianluca23ORCID

Affiliation:

1. Department of Engineering of Innovation, University of Salento, 73100 Lecce, Italy

2. National Institute of Nuclear Physics (INFN), 73100 Lecce, Italy

3. Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy

4. INFN—Laboratori Nazionali del Sud, 95123 Catania, Italy

5. National Institute of Nuclear Physics (INFN)—Sezione di Catania, 95123 Catania, Italy

Abstract

The shortage of 3He, a crucial element widely used as a neutron converter in neutron detection applications, has sparked significant research efforts aimed at finding alternative materials, developing appropriate deposition methods, and exploring new detector architectures. This issue has required the exploration of novel approaches to address the challenges faced in neutron detection. Among the available conversion materials, 10B has emerged as one of the most promising choices due to its high neutron-capture cross-section and relatively high Q value. In our previous papers, we delved into the possibility of depositing neutron conversion layers based on 10B using Pulsed Laser Deposition (PLD). We investigated and evaluated the performance of these layers based on various factors, including deposition conditions, substrate properties, and film thickness. Moreover, we successfully developed and tested a device that employed a single conversion layer coupled with a silicon particle detector. In this current study, we present the development of a new device that showcases improved performance in terms of efficiency, sensitivity, and discrimination against γ background signals. The background signals can arise from the environment or be associated with the neutron field. To achieve these advancements, we considered a new detection geometry that incorporates the simultaneous use of two 10B conversion layers, each with a thickness of 1.5 μm, along with two solid-state silicon detectors. The primary objective of this design was to enhance the overall detection efficiency when compared to the single-layer geometry. By employing this novel setup, our results demonstrate a significant enhancement in the device’s performance when exposed to a neutron flux from an Am-Be neutron source, emitting a flux of approximately 2.2 × 106 neutrons per second. Furthermore, we established a noteworthy agreement between the experimental data obtained and the simulation results.

Funder

INFN

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3