An innovative neutron spectrometer for soil moisture measurements

Author:

Cirillo AndreaORCID,Meucci Ruggero,Caresana Michele,Caresana Marco

Abstract

AbstractSoil moisture is a crucial variable in evaluating soil properties and its interaction with the atmosphere, yet none of the techniques currently employed is fully adequate for evaluating the water content in soil over an area of hectares and depth of tens of centimeters. In recent times, it has been shown how the water content over this volume can be accurately assessed measuring changes in the epithermal flux of cosmic neutrons, which is extremely sensitive to the moderation caused by hydrogen. The instruments employed for neutron flux measurements are usually neutron counters, covered with moderator coatings for enhancing their sensitivity in the epithermal energy range. On the other hand, the worldwide shortage of $${}^{3}$$ 3 He caused a considerable increase in the costs associated with the manufacturing of proportional counters based on this gas, which were widely employed for their great sensitivity and noise rejection capability. In this work, we developed a $${}^{3}$$ 3 He-free neutron spectrometer for performing these measurements, which detects neutrons in the energy range from 0.01 ev to 1 GeV. The reconstruction of the energy spectrum allows a more accurate evaluation of the epithermal neutron flux and provides other information which improves the quality of soil moisture measurements. Irradiations performed with neutron sources of $${}^{241}$$ 241 Am and AmBe allowed to evaluate the spectrometric capability of the instrument, whereas the measurements of cosmic neutrons were employed to assess its sensitivity to cosmic radiation. The sensitivity of the instrument is slightly less than the one of the neutron counters currently employed, yet the access to the spectrometric information should provide greater accuracy in the epithermal flux measurements.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Testing a novel sensor design to jointly measure cosmic-ray neutrons, muons and gamma rays for non-invasive soil moisture estimation;Geoscientific Instrumentation, Methods and Data Systems;2024-01-16

2. Calibration of the W-PIE neutron spectrometer at CERF reference facility;Radiation Protection Dosimetry;2023-10

3. Improving Cosmic-Ray Neutron Sensing with neutron spectrometry;2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor);2022-11-03

4. Calibration of a large-size wide-range neutron spectrometer;The European Physical Journal Plus;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3