Testing a novel sensor design to jointly measure cosmic-ray neutrons, muons and gamma rays for non-invasive soil moisture estimation
-
Published:2024-01-16
Issue:1
Volume:13
Page:9-25
-
ISSN:2193-0864
-
Container-title:Geoscientific Instrumentation, Methods and Data Systems
-
language:en
-
Short-container-title:Geosci. Instrum. Method. Data Syst.
Author:
Gianessi Stefano, Polo Matteo, Stevanato Luca, Lunardon Marcello, Francke Till, Oswald Sascha E.ORCID, Said Ahmed Hami, Toloza Arsenio, Weltin Georg, Dercon Gerd, Fulajtar Emil, Heng Lee, Baroni GabrieleORCID
Abstract
Abstract. Cosmic-ray neutron sensing (CRNS) has emerged as a reliable method for soil moisture and snow estimation. However, the applicability of this method beyond research has been limited due to, among others, the use of relatively large and expensive sensors. This paper presents the tests conducted on a new scintillator-based sensor especially designed to jointly measure neutron counts, muons and total gamma rays. The neutron signal is first compared against two conventional gas-tube-based CRNS sensors at two locations. The estimated soil moisture is further assessed at four agricultural sites, based on gravimetric soil moisture collected within the sensor footprint. Muon fluxes are compared to the incoming neutron variability measured at a neutron monitoring station and total gammas counts are compared to the signal detected by a gamma ray spectrometer. The results show that the neutron dynamic detected by the new scintillator-based CRNS sensor is well in agreement with conventional CRNS sensors. The derived soil moisture also agreed well with the gravimetric soil moisture measurements. The muons and the total gamma rays simultaneously detected by the sensor show promising features to account for the incoming variability and for discriminating irrigation and precipitation events, respectively. Further experiments and analyses should be conducted, however, to better understand the accuracy and the added value of these additional data for soil moisture estimation. Overall, the new scintillator design shows to be a valid and compact alternative to conventional CRNS sensors for non-invasive soil moisture monitoring and to open the path to a wide range of applications.
Funder
European Partnership on Metrology
Publisher
Copernicus GmbH
Reference81 articles.
1. Abraham, M. T., Satyam, N., Rosi, A., Pradhan, B., and Segoni, S.: Usage of antecedent soil moisture for improving the performance of rainfall thresholds for landslide early warning, CATENA, 200, 105147, https://doi.org/10.1016/j.catena.2021.105147, 2021. 2. Andreasen, M., Jensen, K. H., Zreda, M., Desilets, D., Bogena, H., and Looms, M. C.: Modeling cosmic ray neutron field measurements, Water Resour. Res., 52, 6451–6471, https://doi.org/10.1002/2015WR018236, 2016. 3. Andreasen, M., Jensen, K. H., Desilets, D., Zreda, M., Bogena, H. R., and Looms, M. C.: Cosmic-ray neutron transport at a forest field site: the sensitivity to various environmental conditions with focus on biomass and canopy interception, Hydrol. Earth Syst. Sci., 21, 1875–1894, https://doi.org/10.5194/hess-21-1875-2017, 2017a. 4. Andreasen, M., Jensen, K. H., Desilets, D., Franz, T. E., Zreda, M., Bogena, H. R., and Looms, M. C.: Status and Perspectives on the Cosmic-Ray Neutron Method for Soil Moisture Estimation and Other Environmental Science Applications, Vadose Zone J., 16, https://doi.org/10.2136/vzj2017.04.0086, 2017b. 5. Baatz, R., Bogena, H. R., Hendricks Franssen, H.-J., Huisman, J. A., Montzka, C., and Vereecken, H.: An empirical vegetation correction for soil water content quantification using cosmic ray probes, Water Resour. Res., 51, 2030–2046, https://doi.org/10.1002/2014WR016443, 2015.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|