Accounting for the resistivity contribution of grain boundaries in metals: critical analysis of reported experimental and theoretical data for Ni and Cu

Author:

Bakonyi I.ORCID

Abstract

AbstractIn the present paper, reported literature data on the grain-size dependence of resistivity of Ni and Cu are critically evaluated by two conceptually different methods. One is the phenomenological approach of Andrews (Phys. Lett. 19: 558, 1965) according to which in a polycrystalline metal there is a resistivity contribution inversely proportional to the average grain diameter, the proportionality constant defined as the Andrews parameter A. The other method is the customary Mayadas–Shatzkes (MS) model (Phys Rev B 1: 1382, 1970) yielding a grain-boundary reflection coefficient R. During the analysis, special care was taken to rely only on data for which the surface scattering resistivity contribution was definitely negligibly small and the grain size was determined by direct microscopy imaging. By sorting out with this analysis the most reliable grain-size-dependent resistivity data for polycrystalline Ni and Cu metals with random grain boundaries, we have then derived the current best room-temperature values of the Andrews parameter A, the specific grain-boundary resistivity and the reflection coefficient R. We have also found a fairly good relation between the parameters A and R and compared the experimental values with their theoretical estimates reported in the literature. Then, the conceptual differences between the two approaches are discussed and the deficiencies of the MS model, especially in connection with the validity of Matthiessen’s rule, are highlighted. A major conclusion is that by the Andrews method one can derive a model-independent reliable parameter characterizing the grain-boundary contribution to the resistivity of metals.

Funder

European Cooperation in Science and Technology

Eötvös Loránd Research Network (ELKH) Secretariat

ELKH Wigner Research Centre for Physics

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3