Constraining theories of gravity by GINGER experiment

Author:

Capozziello SalvatoreORCID,Altucci Carlo,Bajardi Francesco,Basti Andrea,Beverini Nicolò,Carelli Giorgio,Ciampini Donatella,Di Virgilio Angela D. V.,Fuso Francesco,Giacomelli Umberto,Maccioni Enrico,Marsili Paolo,Ortolan Antonello,Porzio Alberto,Simonelli Andrea,Terreni Giuseppe,Velotta Raffaele

Abstract

AbstractThe debate on gravity theories to extend or modify general relativity is very active today because of the issues related to ultraviolet and infrared behavior of Einstein’s theory. In the first case, we have to address the quantum gravity problem. In the latter, dark matter and dark energy, governing the large-scale structure and the cosmological evolution, seem to escape from any final fundamental theory and detection. The state of the art is that, up to now, no final theory, capable of explaining gravitational interaction at any scale, has been formulated. In this perspective, many research efforts are devoted to test theories of gravity by space-based experiments. Here, we propose straightforward tests by the GINGER experiment, which, being Earth based, requires little modeling of external perturbation, allowing a thorough analysis of the systematics, crucial for experiments where sensitivity breakthrough is required. Specifically, we want to show that it is possible to constrain parameters of gravity theories, like scalar–tensor or Horava–Lifshitz gravity, by considering their post-Newtonian limits matched with experimental data. In particular, we use the Lense–Thirring measurements provided by GINGER to find out relations among the parameters of theories and finally compare the results with those provided by LARES and Gravity Probe B satellites.

Funder

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Corrections to general relativity with higher-order invariants and cosmological applications;International Journal of Geometric Methods in Modern Physics;2023-11-16

2. GINGER;Mathematics and Mechanics of Complex Systems;2023-11-12

3. Status of the GINGER project;AVS Quantum Science;2023-10-26

4. Multiscale constraints on scalar-field couplings to matter: The geodetic and frame-dragging effects;Physical Review D;2023-09-27

5. Analytical solutions of spherical structures with relativistic corrections;The European Physical Journal C;2023-08-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3