The Z lineshape challenge: ppm and keV measurements

Author:

Alcaraz Maestre JuanORCID,Blondel Alain,Dam Mogens,Janot Patrick

Abstract

AbstractThe FCC-ee offers powerful opportunities for direct or indirect evidence for physics beyond the standard model, via a combination of high-precision measurements and searches for forbidden and rare processes and feebly coupled particles. A key element of FCC-ee physics program is the measurement of the Z lineshape from a total of $$5\times 10^{12}$$ 5 × 10 12 Z bosons and a beam-energy calibration with relative uncertainty of $$10^{-6}$$ 10 - 6 . With this exceptionally large event sample, five orders of magnitude larger than that accumulated during the whole LEP1 operation at the Z pole, the defining parameters—$$m_\mathrm{Z}$$ m Z , $$\Gamma _\mathrm{Z}$$ Γ Z , $$N_\nu $$ N ν , $$\sin ^2\theta _\mathrm{W}^\mathrm{eff}$$ sin 2 θ W eff , $$\alpha _\mathrm{S}(m_\mathrm{Z}^2)$$ α S ( m Z 2 ) , and $$\alpha _\mathrm{QED}(m^2_\mathrm{Z})$$ α QED ( m Z 2 ) —can be extracted with a leap in accuracy of up to two orders of magnitude with respect to the current state of the art. The ultimate goal that experimental and theory systematic errors match the statistical accuracy (4 keV on the Z mass and width, $$3\times 10^{-6}$$ 3 × 10 - 6 on $$\sin ^2\theta _\mathrm{W}^\mathrm{eff}$$ sin 2 θ W eff , a relative $$3\times 10^{-5}$$ 3 × 10 - 5 on $$\alpha _\mathrm{QED}$$ α QED , and less than 0.0001 on $$\alpha _\mathrm{S}$$ α S ) leads to highly demanding requirements on collider operation, beam instrumentation, detector design, computing facilities, theoretical calculations, and Monte Carlo event generators. Such precise measurements also call for innovative analysis methods, which require a joint effort and understanding between theorists, experimenters, and accelerator teams.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Reference25 articles.

1. A. Abada et al., FCC-ee: The Lepton Collider; FCC CDR Volume 2. Eur. Phys. J. ST 228(2), 261–623 (2019)

2. A. Blondel, E. Gianfelice, The challenges of beam polarization and keV-scale centre-of-mass energy calibration. A future Higgs and Electroweak factory (FCC): Challenges towards discovery, EPJ+ special issue, Focus on FCC-ee

3. A. Blondel, P. Janot, J. Wenninger, et al. Polarization and Centre-of-mass Energy Calibration at FCC-ee, arXiv:1909.12245 [physics.acc-ph]

4. A. Blondel et al. Standard model theory for the FCC-ee Tera-Z stage. In Mini Workshop on Precision EW and QCD Calculations for the FCC Studies : Methods and Techniques, vol. 3/2019 of CERN Yellow Reports: Monographs. CERN, Geneva, 9, 2018, http://dx.doi.org/10.23731/CYRM-2019-003, arXiv:1809.01830 [hep-ph]

5. A. Abada et al. FCC Physics Opportunities; FCC CDR Volume 1, Eur. Phys. J. C 796, 474 (2019) http://dx.doi.org/10.1140/epjc/s10052-019-6904-3

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3