Challenges for FCC-ee luminosity monitor design

Author:

Dam MogensORCID

Abstract

AbstractFor cross section measurements, an accurate knowledge of the integrated luminosity is required. The FCC-ee physics programme at and around the Z pole sets the ambitious precision goal of $$10^{-4}$$ 10 - 4 on the absolute luminosity measurement and one order of magnitude better on the relative measurement between energy scan points. The luminosity is determined from the rate of Bhabha scattering, $$\mathrm {e^+e^- \rightarrow e^+e^-}$$ e + e - e + e - , where the final state electrons and positrons are detected in dedicated monitors covering small angles from the outgoing beam directions. The constraints on the luminosity monitors are multiple: (i) they are placed inside the main detector volume only about 1 m from the interaction point; (ii) they are centred around the outgoing beam directions and do not satisfy the normal axial detector symmetry; (iii) their coverage is limited by the beam pipe, on the one hand, and by the requirement to stay clear of the main detector acceptance, on the other; (iv) the steep angular dependence of the Bhabha scattering process imposes a precision on the acceptance limits at about 1 $$\upmu $$ μ rad, corresponding to an absolute geometrical precision of $${\mathcal {O}}(1\,\upmu \text {m})$$ O ( 1 μ m ) on the monitor radial dimensions; and v) the very high bunch-crossing rate of 50 MHz during the Z-pole operation calls for fast readout electronics. Inspired by second-generation LEP luminosity monitors, which achieved an experimental precision of $$3.4 \times 10^{-4}$$ 3.4 × 10 - 4 on the absolute luminosity measurement (Abbiendi et al. in Eur Phys J C 14:373–425, 2000), a proposed ultra-compact solution is based on a sandwich of tungsten-silicon layers. A vigorous R &D programme is needed in order to ensure that such a solution satisfies the more challenging FCC-ee requirements.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Fluid Flow and Transfer Processes

Reference22 articles.

1. P. Grafström, W. Kozanecki , Luminosity determination at proton colliders, Progress Particle Nuclear Phys. 81, 97–148 (2015). https://www.sciencedirect.com/science/article/pii/S0146641014000878

2. BaBar, J.P. Lees et al., Time-Integrated Luminosity Recorded by the BABAR Detector at the PEP-II $$e^+ e^-$$ Collider, Nucl. Instrum. Meth. A 726, 203–213 (2013). arXiv:1301.2703 [hep-ex]

3. Belle-II, F. Abudinén et al., Measurement of the integrated luminosity of the Phase 2 data of the Belle II experiment, Chin. Phys. C 44 no. 2, 021001 (2020). arXiv:1910.05365 [hep-ex]

4. H.J. Bhabha, The scattering of positrons by electrons with exchange on Dirac’s theory of the positron. Proc. Roy. Soc. Lond. A 154, 195–206 (1936)

5. I.C. Brock et al., Luminosity measurement in the L3 detector at LEP. Nucl. Instrum. Meth. A 381, 236–266 (1996)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3