Automation of developing adaptive e-learning using blockchain technology

Author:

Zimina Dina1,Muromtsev Dmitry1

Affiliation:

1. ITMO University

Abstract

The low percentage of completion of online courses in the framework of the modern mass online education may be related to the lack of adaptation for a specific user of an online course of a learning path unifying all the stu-dents. The solution to the problem can be adaptive learning, which modifies the learning process for different students depending on their characteristics and learning conditions. The purpose of the study is to automate the process of developing adaptive e-learning by using the blockchain technology. The results of a study, in which adaptive learning was organized on the basis of the Felder-Silverman learning styles model was used as input data for the experiment. Applying the mechanism of smart contracts, the blockchain technology registered learning events, which made it possible to determine the learning style of users directly during the learning process. The chosen model of learning styles, as well as the number of categories of students, were configured exclusively in the smart contract code, which made it possible to talk about the universality and scalability of the process of organizing adaptive e-learning using the blockchain. The technology also ensured the reliability of data storage and traceability. It documents heterogeneous data in a single storage space adding a timemarker and the author's address to each recorded event. The proposed method also unifies the organization of adaptive e-learning, since it is suitable for different models of learning styles with different parameters. The automated process does not require the development of preliminary tests and is free from biased assessments from the students in the learning course

Publisher

Astrakhan State Technical University

Reference23 articles.

1. Рощина Я. М., Рощин С. Ю., Рудаков В. Н. Спрос на массовые открытые онлайн-курсы (MOOC): опыт российского образования // Вопр. образования. 2018. № 1. С. 174–199. DOI: 10.17323/1814-9545-2018-1-174-199., Roschina Ya. M., Roschin S. Yu., Rudakov V. N. Spros na massovye otkrytye onlayn-kursy (MOOC): opyt rossiyskogo obrazovaniya // Vopr. obrazovaniya. 2018. № 1. S. 174–199. DOI: 10.17323/1814-9545-2018-1-174-199.

2. Голубева Г. Ф., Тришин А. А. Массовые открытые онлайн-курсы в России и за рубежом с позиций глобального информационного пространства // Эргодизайн. 2018. № 2. С. 8–14. DOI: 10.30987/article_5bf98b63306ed0.91342378., Golubeva G. F., Trishin A. A. Massovye otkrytye onlayn-kursy v Rossii i za rubezhom s poziciy global'nogo informacionnogo prostranstva // Ergodizayn. 2018. № 2. S. 8–14. DOI: 10.30987/article_5bf98b63306ed0.91342378.

3. Солодов А. В., Прокубовская А. О., Чубаркова Е. В. Массовые открытые онлайн-курсы – особенности и перспективы // Наука. Информатизация. Технологии. Образование. 2018. С. 433–439., Solodov A. V., Prokubovskaya A. O., Chubarkova E. V. Massovye otkrytye onlayn-kursy – osobennosti i perspektivy // Nauka. Informatizaciya. Tehnologii. Obrazovanie. 2018. S. 433–439.

4. Harvard, MIT: Despite low completion rates, MOOCs work // The Hechinger Report. URL: https://hechingerreport.org/harvard-mit-despite-low-completion-rates-moocs-work/ (дата обращения: 23.02.2022)., Harvard, MIT: Despite low completion rates, MOOCs work // The Hechinger Report. URL: https://hechingerreport.org/harvard-mit-despite-low-completion-rates-moocs-work/ (data obrascheniya: 23.02.2022).

5. Ahmed M. U., Sangi N. A., Mahmood A. A model of adaptive e-Learning in an ODL environment // Mehran University Research Journal of Engineering and Technology. 2018. V. 37. N. 2. P. 367–382. DOI: 10.22581/muet1982.1802.13., Ahmed M. U., Sangi N. A., Mahmood A. A model of adaptive e-Learning in an ODL environment // Mehran University Research Journal of Engineering and Technology. 2018. V. 37. N. 2. P. 367–382. DOI: 10.22581/muet1982.1802.13.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3