Abstract
This paper focuses on the experimental study of an alteration in the railway crossing dynamic response due to the rolling surface degradation during a crossing’s lifecycle. The maximal acceleration measured with the track-side measurement system as well as the impact position monitoring show no significant statistical relation to the rolling surface degradation. The additional spectral features are extracted from the acceleration measurements with a wavelet transform to improve the information usage. The reliable prediction of the railway crossing remaining useful life (RUL) demands the trustworthy indicators of structural health that systematically change during the lifecycle. The popular simple machine learning methods like principal component analysis and partial least square regression are used to retrieve two indicators from the experimental information. The feature ranking and selection are used to remove the redundant information and increase the relation of indicators to the lifetime.
Publisher
Czech Technical University in Prague - Central Library
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献