Development of the computer vision system based on machine learning for educational purposes

Author:

Semerikov Serhiy O.ORCID,Vakaliuk Tetiana A.ORCID,Mintii Iryna S.ORCID,Hamaniuk Vita A.ORCID,Soloviev Vladimir N.ORCID,Bondarenko Olga V.ORCID,Nechypurenko Pavlo P.ORCID,Shokaliuk Svitlana V.ORCID,Moiseienko Natalia V.ORCID,Ruban Vitalii R.

Abstract

The article provides an overview of the origins and current state of machine vision systems, examples of machine vision problems. The article describes the use of computer vision systems in education in both conventional and pandemic conditions. The COVID-19 pandemic has triggered changes in education that have modified existing educational applications of computer vision systems and spawned new ones, including social distancing, facial mask recognition, detection of infiltration into universities and schools, prevention of vandalism and detection of suspicious objects, attendance monitoring, recognition of emotions on faces in and without masks. Computer vision systems can also be used in education to introduce immersive educational resources. On the basis of the analysis of autonomous libraries for the identification of dynamic objects, it is concluded that in the creation of computer vision systems for educational purposes it is advisable to use computer vision libraries based on in-depth learning (in particular, the implementation of convolutional neural networks). A prototype computer vision system developed on the basis of Microsoft Cognitive Toolkit and deployed in the Microsoft Azure cloud is described. The system allows you to perform with a high degree of reliability the main functions: identification of emotions and the presence of a mask on the face, as well as allows you to determine sex, age, hair color, smile intensity, the presence of makeup, glasses, etc.

Publisher

Kryvyi Rih State Pedagogical University

Reference25 articles.

1. Google Ngram Viewer. https://books.google.com/ngrams/graph?content=computer+vision%2C+machine+vision&year_start=1800&year_end=2019&corpus=26&smoothing=3&direct_url=t1%3B%2Ccomputer%20vision% 3B%2Cc0%3B.t1%3B%2Cmachine%20vision%3B%2Cc0#t1%3B%2Ccomputer%20vision%3B%2Cc0%3B.t1%3B%2Cmachine%20vision%3B%2Cc0

2. Adaptive Vision. Libraries comparison. https://docs.adaptive-vision.com/avl/technical_issues/LibrariesComparison.html

3. Lakshya Agarwal, Manan Mukim, Harish Sharma, Amit Bhandari, and Atul Mishra. 2021. Face Recognition Based Smart and Robust Attendance Monitoring using Deep CNN. In 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom). 699–704 (2021). doi: 10.1109/INDIACom51348.2021.00124

4. Dana, H. Ballard and Christopher M. Brown. Computer Vision. Prentice Hall, Englewood Cliffs. https://archive.org/details/computervision0000ball (1982). Accessed 13 Nov 2021

5. Bennett, J.: Happy, Sad, Angry Workshop. https://github.com/jimbobbennett/HappySadAngryWorkshop (2020). Accessed 13 Nov 2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3