Affiliation:
1. FIRAT ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ
2. DİCLE ÜNİVERSİTESİ, TIP FAKÜLTESİ
Abstract
Pnömoni, akciğer dokusunda ciddi iltihaplanmalara sebep olabilen akut alt solunum yolu hastalıklarından biridir. Pnömoni tanısı için en yaygın klinik yöntem göğüs röntgeni (CXR) olmakla beraber, CXR görüntülerinden pnömoni teşhisi, uzman radyologlar için bile zor bir iştir. Derin öğrenme tabanlı görüntü işlemenin, pnömoni’nin otomatik teşhisinde etkili olduğu literatürdeki çalışmalarda gösterilmiştir. Bu çalışmada pnömoni ve sağlıklı CXR görüntülerini sınıflandırmak için derin öğrenmeye dayalı yaklaşımlar kullanılmıştır. Bu yaklaşımlar, derin öznitelik çıkarımı, önceden eğitilmiş evrişimli sinir ağlarının (ESA) ince ayarı ve geliştirilmiş bir ESA modelinin uçtan uca eğitimidir. Derin öznitelik çıkarımı ve transfer öğrenme için 10 farklı önceden eğitilmiş ESA modelleri (AlexNet, ResNet50, DenseNet201, VGG16, VGG19, DarkNet53, ShuffleNet, Squeezenet, NASNetMobile ve MobileNetV2) kullanılmıştır. Derin özniteliklerin sınıflandırılması için Destek Vektör Makineleri (DVM) sınıflandırıcısı kullanılmıştır. İnce ayarlı MobileNetV2 modelinin başarısı, elde edilen tüm sonuçlar arasında en yüksek olan %99,25 doğruluk puanı üretmiştir. AlexNet modelinden çıkarılan derin özniteliklerin 10 kat çapraz doğrulama test başarısı %97,8 bulunurken, geliştirilen 21 katmanlı ESA modelinin uçtan uca eğitimi %94,25 sonuç vermiştir. Bu çalışmada kullanılan veri seti, Dicle Üniversitesi Tıp Fakültesi Göğüs Hastalıkları ve Tüberküloz kliniği ile yoğun bakım ünitesinden ve göğüs polikliniğinden elde edilen pnömonili ve sağlıklı CXR görüntülerinden oluşmaktadır.
Publisher
Journal of the Faculty of Engineering and Architecture of Gazi University
Subject
General Engineering,Architecture
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献