du-CBA: Veriden habersiz ve artırımlı sınıflandırmaya dayalı birliktelik kuralları çıkarma mimarisi
Author:
BÜYÜKTANIR Büşra1ORCID, YILDIZ Kazım1ORCID, ÜLKÜ Eyüp Emre1ORCID, BÜYÜKTANIR Tolga2ORCID
Affiliation:
1. MARMARA ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ 2. YILDIZ TEKNİK ÜNİVERSİTESİ, ELEKTRİK-ELEKTRONİK FAKÜLTESİ
Abstract
İstemci sunucu sistemlerinde makine öğrenmesi modeli kullanılması bir ihtiyaçtır. Ancak istemcilerden verilerin toplanması, sunucuya aktarılması, makine öğrenmesi modeli eğitilmesi ve bu modelin istemcilerde çalışan cihazlara entegre edilmesi bir çok problemi beraberinde getirmektedir. Verilerin istemcilerden sunucuya transferi ağ trafiğine sebep olmakta, fazla enerji gerektirmekte ve veri mahremiyetini istismar edilebilmektedir. Çalışma kapsamında, bahsedilen problemlere çözüm için federe öğrenme mimarisi kullanılmaktadır. Mimariye göre, her bir istemcide istemcinin kendi verilerinden makine öğrenmesi modeli eğitilmektedir. Her bir istemcide eğitilen modeller sunucuya gönderilmekte ve sunucuda bu modeller birleştirilerek yeni bir model oluşturulmaktadır. Oluşturulan nihai model tekrar istemcilere dağıtılmaktadır. Bu çalışmada Veriden Habersiz İlişkili Kurallara Dayalı Sınıflandırma (Data Unaware Classification Based on Association, du-CBA) olarak adlandırılan ilişkisel sınıflandırma algoritması geliştirilmiştir. Federe öğrenme ile klasik öğrenme mimarilerini karşılaştırıp başarılarını ölçmek için çalışma kapsamında benzetim ortamı oluşturulmuştur. Benzetim ortamında du-CBA ve CBA algoritmaları kullanılarak modeller eğitilmiş ve sonuçlar kıyaslanmıştır. Modellerin eğitiminde University of California Irvine (UCI) veri havuzundan alınan beş veri seti kullanılmıştır. Deneysel sonuçlar, her bir veri seti için federe öğrenme ile eğitilen modellerin, klasik öğrenme ile eğitilen modellerle neredeyse aynı doğruluğu elde ettiğini ama eğitim sürelerinin yaklaşık %70 oranında azaldığını göstermiştir. Sonuçlar geliştirilen algoritmanın başarıya ulaştığını ortaya koymaktadır.
Publisher
Journal of the Faculty of Engineering and Architecture of Gazi University
Subject
General Engineering,Architecture
Reference40 articles.
1. 1. Yazici, M. T., Basurra, S., & Gaber, M. M., Edge machine learning: Enabling smart internet of things applications. Big data and cognitive computing, 2 (3), 26, 2018. 2. 2. Merenda, M., Porcaro, C., & Iero, D., Edge machine learning for ai-enabled iot devices: A review. Sensors, 20 (9), 2533, 2020. 3. 3. Murshed, M. S., Murphy, C., Hou, D., Khan, N., Ananthanarayanan, G., & Hussain, F., Machine learning at the network edge: A survey. ACM Computing Surveys (CSUR), 54 (8), 1-37, 2021. 4. 4. Du, M., Wang, K., Chen, Y., Wang, X., & Sun, Y., Big data privacy preserving in multi-access edge computing for heterogeneous Internet of Things. IEEE Communications Magazine, 56 (8), 62-67, 2018. 5. 5. Büyüknacar, Y., Canbay, Y., Federe öğrenme ve veri mahremiyeti, 2021.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|