Edge Machine Learning: Enabling Smart Internet of Things Applications

Author:

Yazici MahmutORCID,Basurra ShadiORCID,Gaber MohamedORCID

Abstract

Machine learning has traditionally been solely performed on servers and high-performance machines. However, advances in chip technology have given us miniature libraries that fit in our pockets and mobile processors have vastly increased in capability narrowing the vast gap between the simple processors embedded in such things and their more complex cousins in personal computers. Thus, with the current advancement in these devices, in terms of processing power, energy storage and memory capacity, the opportunity has arisen to extract great value in having on-device machine learning for Internet of Things (IoT) devices. Implementing machine learning inference on edge devices has huge potential and is still in its early stages. However, it is already more powerful than most realise. In this paper, a step forward has been taken to understand the feasibility of running machine learning algorithms, both training and inference, on a Raspberry Pi, an embedded version of the Android operating system designed for IoT device development. Three different algorithms: Random Forests, Support Vector Machine (SVM) and Multi-Layer Perceptron, respectively, have been tested using ten diverse data sets on the Raspberry Pi to profile their performance in terms of speed (training and inference), accuracy, and power consumption. As a result of the conducted tests, the SVM algorithm proved to be slightly faster in inference and more efficient in power consumption, but the Random Forest algorithm exhibited the highest accuracy. In addition to the performance results, we will discuss their usability scenarios and the idea of implementing more complex and taxing algorithms such as Deep Learning on these small devices in more details.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Information Systems,Management Information Systems

Reference39 articles.

1. The Internet of Things in the Cognitive Era: Realizing the Future and Full Potential of Connected Devices;Green,2015

2. Internet of Things (IoT): A vision, architectural elements, and future directions

3. The Internet of Things: How the Next Evolution of the Internet is Changing Everything;Evans;CISCO White Paper,2011

4. Unlocking the Potential of the Internet of Things;Manyika,2015

5. The Internet of Things (IoT): Applications, investments, and challenges for enterprises

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3